27,399 research outputs found
A Look At Three Different Scenarios for Bulge Formation
In this paper, we present three qualitatively different scenarios for bulge
formation: a secular evolution model in which bulges form after disks and
undergo several central starbursts, a primordial collapse model in which bulges
and disks form simultaneously, and an early bulge formation model in which
bulges form prior to disks. We normalize our models to the local z=0
observations of de Jong & van der Kruit (1994) and Peletier & Balcells (1996)
and make comparisons with high redshift observations. We consider model
predictions relating directly to bulge-to-disk properties. As expected, smaller
bulge-to-disk ratios and bluer bulge colors are predicted by the secular
evolution model at all redshifts, although uncertainties in the data are
currently too large to differentiate strongly between the models.Comment: 19 pages, 6 figures, accepted for publication in the Astrophysical
Journa
De (biologische) boer als landschapsondernemer
Doel van het project was om inzicht te verkrijgen in beelden en verwachtingen van consumenten ten aanzien van hoe biologische ondernemers omgaan met natuur, landschap en biodiversiteit op hun bedrijf. Deze inzichten kunnen door ondernemers én door beleidsmakers gebruikt worden om activiteiten voor onderhoud en behoud van natuur en landschap te stimuleren. Uit het onderzoek blijkt dat er intuïtief gezien volgens de respondenten een groot verschil is tussen hoe biologische en reguliere ondernemers omgaan met hun boerderij en directe omgeving, hoewel dat rationeel gesproken niet zo zou moeten zijn. Als je gekozen hebt voor het boerenbestaan krijg je daar namelijk de verantwoordelijkheid voor natuur en dieren automatisch bij. Anders “had je maar op kantoor moeten gaan werken”. De kern van het verschil zit in focus op productie versus focus op duurzame balans. Daar waar bij de reguliere ondernemer alles in het teken staat van economische productie laat de biologische ondernemer meerdere belangen meewegen. Dat betekent dat hij socialer en respectvoller is in de omgang met mensen, dieren, natuur en omgeving. Hij is meer begaan met milieu en klimaat en heeft meer aandacht voor de flora en fauna in zijn omgeving. Dat vertaalt zich in meer begroeiing en meer afwisseling in het landschap. De reguliere ondernemer is daarentegen gericht op efficiency en minimaliseren van onderhoud; daarom is alles in zijn omgeving kaal en monotoon en niet altijd goed onderhoude
Structure of Disk Dominated Galaxies I. Bulge/Disk Parameters, Simulations, and Secular Evolution
(Abridged) A robust analysis of galaxy structural parameters, based on the
modeling of bulge and disk brightnesses in the BVRH bandpasses, is presented
for 121 face-on and moderately inclined late-type spirals. Each surface
brightness (SB) profile is decomposed into a sum of a generalized Sersic bulge
and an exponential disk. The reliability and limitations of our bulge-to-disk
(B/D) decompositions are tested with extensive simulations of galaxy brightness
profiles (1D) and images (2D). Galaxy types are divided into 3 classes
according to their SB profile shapes; Freeman Type-I and Type-II, and a third
``Transition'' class for galaxies whose profiles change from Type-II in the
optical to Type-I in the infrared. We discuss possible interpretations of
Freeman Type-II profiles. The Sersic bulge shape parameter for nearby Type-I
late-type spirals shows a range between n=0.1-2 but, on average, the underlying
surface density profile for the bulge and disk of these galaxies is adequately
described by a double-exponential distribution. We confirm a coupling between
the bulge and disk with a scale length ratio r_e/h=0.22+/-0.09, or
h_bulge/h_disk=0.13+/-0.06 for late-type spirals, in agreement with recent
N-body simulations of disk formation and models of secular evolution. This
ratio increases from ~0.20 for late-type spirals to ~0.24 for earlier types.
The similar scaling relations for early and late-type spirals suggest
comparable formation and/or evolution scenarios for disk galaxies of all Hubble
types.Comment: 78 pages with 23 embedded color figures + tables of galaxy structural
parameters. Accepted for publication in the Astrophysical Journal. The
interested reader is strongly encouraged to ignore some of the low res
figures within; instead, download the high resolution version from
http://www.astro.ubc.ca/people/courteau/public/macarthur02_disks.ps.g
Simulations of Dust in Interacting Galaxies I: Dust Attenuation
A new Monte-Carlo radiative-transfer code, Sunrise, is used in conjunction
with hydrodynamic simulations of major galaxy mergers to calculate the effects
of dust in such systems. The simulations are in good agreement with
observations of dust absorption in starburst galaxies, and the dust has a
profound effect on their appearance. The dust attenuation increases with
luminosity such that at peak luminosities ~90% of the bolometric luminosity is
absorbed by dust. In general, the detailed appearance of the merging event
depends on the stage of the merger and the geometry of the encounter. The
fraction of bolometric energy absorbed by the dust, however, is a robust
quantity that can be predicted from the intrinsic properties bolometric
luminosity, baryonic mass, star-formation rate, and metallicity of the system.
This paper presents fitting formulae, valid over a wide range of masses and
metallicities, from which the absorbed fraction of luminosity (and consequently
also the infrared dust luminosity) can be predicted. The attenuation of the
luminosity at specific wavelengths can also be predicted, albeit with a larger
scatter due to the variation with viewing angle. These formulae for dust
attenuation appear to be valid for both isolated and interacting galaxies, are
consistent with earlier studies, and would be suitable for inclusion in
theoretical models, e.g. semi-analytic models of galaxy formation.Comment: 12 pages, 10 figures, submitted to Ap
Stabilizing nuclear spins around semiconductor electrons via the interplay of optical coherent population trapping and dynamic nuclear polarization
We experimentally demonstrate how coherent population trapping (CPT) for
donor-bound electron spins in GaAs results in autonomous feedback that prepares
stabilized states for the spin polarization of nuclei around the electrons. CPT
was realized by excitation with two lasers to a bound-exciton state.
Transmission studies of the spectral CPT feature on an ensemble of electrons
directly reveal the statistical distribution of prepared nuclear spin states.
Tuning the laser driving from blue to red detuned drives a transition from one
to two stable states. Our results have importance for ongoing research on
schemes for dynamic nuclear spin polarization, the central spin problem and
control of spin coherence.Comment: 5 pages, 4 figure
Split-gate quantum point contacts with tunable channel length
We report on developing split-gate quantum point contacts (QPCs) that have a
tunable length for the transport channel. The QPCs were realized in a
GaAs/AlGaAs heterostructure with a two- dimensional electron gas (2DEG) below
its surface. The conventional design uses 2 gate fingers on the wafer surface
which deplete the 2DEG underneath when a negative gate voltage is applied, and
this allows for tuning the width of the QPC channel. Our design has 6 gate
fingers and this provides additional control over the form of the electrostatic
potential that defines the channel. Our study is based on electrostatic
simulations and experiments and the results show that we developed QPCs where
the effective channel length can be tuned from about 200 nm to 600 nm.
Length-tunable QPCs are important for studies of electron many-body effects
because these phenomena show a nanoscale dependence on the dimensions of the
QPC channel
On Star Formation and the Non-Existence of Dark Galaxies
We investigate whether a baryonic dark galaxy or `galaxy without stars' could
persist indefinitely in the local universe, while remaining stable against star
formation. To this end, a simple model has been constructed to determine the
equilibrium distribution and composition of a gaseous protogalactic disk.
Specifically, we determine the amount of gas that will transit to a Toomre
unstable cold phase via the H2 cooling channel in the presence of a UV--X-ray
cosmic background radiation field.
All but one of the models are predicted to become unstable to star formation.
Moreover, we find that all our model objects would be detectable via HI line
emission, even in the case that star formation is potentially avoided. These
results are consistent with the non-detection of isolated extragalactic HI
clouds with no optical counterpart (galaxies without stars) by HIPASS.
Additionally, where star formation is predicted to occur, we determine the
minimum interstellar radiation field required to restore gravothermal
stability, which we then relate to a minimum global star formation rate. This
leads to the prediction of a previously undocumented relation between HI mass
and star formation rate that is observed for a wide variety of dwarf galaxies
in the HI mass range 10^8--10^10 M_sun. The existence of such a relation
strongly supports the notion that the well observed population of dwarf
galaxies represent the minimum rates of self-regulating star formation in the
universe. (Barely abridged)Comment: 19 pages, 8 figures, TeX using emulateapj.cls, v2 accepted for
publication in ApJ (16/8/5) with one figure deleted and a number of minor
clarifying revision
XTE J1550-564: INTEGRAL Observations of a Failed Outburst
The well known black-hole X-ray binary transient XTE J1550-564 underwent an
outburst during the spring of 2003 which was substantially underluminous in
comparison to previous periods of peak activity in that source. In addition,
our analysis shows that it apparently remained in the hard spectral state over
the duration of that outburst. This is again in sharp contrast to major
outbursts of that source in 1998/1999 during which it exhibited an irregular
light curve, multiple state changes and collimated outflows. This leads us to
classify it as a "failed outburst." We present the results of our study of the
spring 2003 event including light curves based on observations from both
INTEGRAL and RXTE. In addition, we studied the evolution of the high-energy
3-300 keV continuum spectrum using data obtained with three main instruments on
INTEGRAL. These spectra are consistent with typical low-hard-state thermal
Comptonization emission. We also consider the 2003 event in the context of a
multi-source, multi-event period-peak luminosity diagram in which it is a clear
outlyer. We then consider the possibility that the 2003 event was due to a
discrete accretion event rather than a limit-cycle instablility. In that
context, we apply model fitting to derive the timescale for viscous propagation
in the disk, and infer some physical characteristics.Comment: 22 pages, 8 figures, to be published in The Astrophysical Journa
Drop impact upon micro- and nanostructured superhydrophobic surfaces
We experimentally investigate drop impact dynamics onto different
superhydrophobic surfaces, consisting of regular polymeric micropatterns and
rough carbon nanofibers, with similar static contact angles. The main control
parameters are the Weber number \We and the roughness of the surface. At small
\We, i.e. small impact velocity, the impact evolutions are similar for both
types of substrates, exhibiting Fakir state, complete bouncing, partial
rebouncing, trapping of an air bubble, jetting, and sticky vibrating water
balls. At large \We, splashing impacts emerge forming several satellite
droplets, which are more pronounced for the multiscale rough carbon nanofiber
jungles. The results imply that the multiscale surface roughness at nanoscale
plays a minor role in the impact events for small \We \apprle 120 but an
important one for large \We \apprge 120. Finally, we find the effect of
ambient air pressure to be negligible in the explored parameter regime \We
\apprle 150Comment: 8 pages, 7 figure
- …
