5,454 research outputs found

    Discrete Event Simulation for Decision Modeling in Health Care: Lessons from Abdominal Aortic Aneurysm Screening

    Get PDF
    Markov models are often used to evaluate the cost-effectiveness of new healthcare interventions but they are sometimes not flexible enough to allow accurate modeling or investigation of alternative scenarios and policies. A Markov model previously demonstrated that a one-off invitation to screening for abdominal aortic aneurysm (AAA) for men aged 65 y in the UK and subsequent follow-up of identified AAAs was likely to be highly cost-effective at thresholds commonly adopted in the UK (£20,000 to £30,000 per quality adjusted life-year). However, new evidence has emerged and the decision problem has evolved to include exploration of the circumstances under which AAA screening may be cost-effective, which the Markov model is not easily able to address. A new model to handle this more complex decision problem was needed, and the case of AAA screening thus provides an illustration of the relative merits of Markov models and discrete event simulation (DES) models. An individual-level DES model was built using the R programming language to reflect possible events and pathways of individuals invited to screening v. those not invited. The model was validated against key events and cost-effectiveness, as observed in a large, randomized trial. Different screening protocol scenarios were investigated to demonstrate the flexibility of the DES. The case of AAA screening highlights the benefits of DES, particularly in the context of screening studies

    Psychological, psychophysical, and ergogenic effects of music in swimming

    Get PDF
    OBJECTIVES: Existing work using dry land exercise-related activities has shown that the careful application of music can lead to a range of benefits that include enhanced affect, lower perceived exertion, greater energy efficiency, and faster time trial performances. The purpose of this study was to assess the psychological, psychophysical, and ergogenic effects of asynchronous music in swimming using a mixed-methods approach. DESIGN: A mixed-model design was employed wherein there was a within-subjects factor (two experimental conditions and a control) and a between-subjects factor (gender). The experimental component of the study was supplemented by qualitative data that were analysed using inductive content analysis. METHODS: Twenty six participants (Mage = 20.0 years, age range: 18–23 years) underwent a period of habituation with Speedo Aquabeat MP3 players prior to the experimental phase. They were then administered two experimental trials (motivational and oudeterous music at 130 bpm) and a no-music control, during which they engaged in a 200-m freestyle swimming time trial. RESULTS: Participants swam significantly faster when exposed to either music condition relative to control (p = .022, ηp2=.18). Moreover, the music conditions were associated with higher state motivation (p = .016, ηp2=.15) and more dissociative thoughts (p = .014, ηp2=.16). CONCLUSIONS: Findings supported the hypothesis that the use of asynchronous music during a high-intensity task can have an ergogenic effect; this was in the order of 2% when averaged out across the two experimental conditions. The use of music, regardless of its motivational qualities, resulted in higher self-reported motivation as well as more dissociative thoughts

    Localization in semi-infinite herringbone waveguides

    Get PDF
    The paper includes novel results for the scattering and localization of a time-harmonic flexural wave by a semi-infinite herringbone waveguide of rigid pins embedded within an elastic Kirchhoff plate. The analytical model takes into account the orientation and spacing of the constituent parts of the herringbone system, and incorporates dipole approximations for the case of closely spaced pins. Illustrative examples are provided, together with the predictive theoretical analysis of the localized waveforms

    Controlling Flexural Waves in Semi-Infinite Platonic Crystals with Resonator-Type Scatterers

    Get PDF
    We address the scattering and transmission of a plane flexural wave through a semi-infinite array of point scatterers/resonators, which take a variety of physically interesting forms. The mathematical model accounts for several classes of point defects, including mass-spring resonators attached to the top surface of the flexural plate and their limiting case of concentrated point masses. We also analyse the special case of resonators attached to opposite faces of the plate. The problem is reduced to a functional equation of the Wiener–Hopf type, whose kernel varies with the type of scatterer considered. A novel approach, which stems from the direct connection between the kernel function of the semi-infinite system and the quasi-periodic Green's functions for corresponding infinite systems, is used to identify special frequency regimes. We thereby demonstrate dynamically anisotropic wave effects in semi-infinite platonic crystals, with particular attention paid to designing systems that exhibit dynamic neutrality (perfect transmission) and localisation close to the structured interface

    High refractive index of melanin in shiny occipital feathers of a bird of paradise

    Get PDF
    Male Lawes's Parotia, a bird of paradise, use the highly directional reflection of the structurally colored, brilliant-silvery occipital feathers in their courtship display. As in other birds, the structural coloration is produced by ordered melanin pigmentation. The barbules of the Parotia's occipital feathers, with thickness ~3 µm, contain 6–7 layers of densely packed melanin rodlets (diameter ~0.25 µm, length ~2 µm). The effectively ~0.2 µm thick melanin layers separated by ~0.2 µm thick keratin layers create a multilayer interference reflector. Reflectance measurements yielded peak wavelengths in the near-infrared at ~1.3 µm, i.e., far outside the visible wavelength range. With the Jamin-Lebedeff interference microscopy method recently developed for pigmented media, we here determined the refractive index of the intact barbules. We thus derived the wavelength dependence of the refractive index of the barbules' melanin to be 1.7–1.8 in the visible wavelength range. Implementing the anatomical and refractive index data in an optical multilayer model, we calculated the barbules' reflectance, transmittance and absorptance spectra, thereby confirming measured spectra
    • …
    corecore