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The paper includes novel results for the scattering
and localization of a time-harmonic flexural wave
by a semi-infinite herringbone waveguide of rigid
pins embedded within an elastic Kirchhoff plate. The
analytical model takes into account the orientation
and spacing of the constituent parts of the herringbone
system, and incorporates dipole approximations for
the case of closely spaced pins. Illustrative examples
are provided, together with the predictive theoretical
analysis of the localized waveforms.

1. Introduction
Herringbone systems are a source of great interest in
the scientific community across a broad spectrum of
fields encompassing branches of physics, chemistry and
biology. In crystallography and solid-state physics, the
preference for herringbone-type close packing of crystals
has long been a topic of study for many groups of
researchers (see, for example, the article by Arlt &
Sasko [1] concerning the domain configuration in barium
titanate ceramics).

The subject of domain structure to minimize the
energy of crystals and grains is still highly relevant
today in modern technologies involving ferroelectric
and piezoelectric materials. A formal classification of
all the rank-2 laminate arrangements for a ferroelectric
single crystal was given in [2], with half featuring
herringbone patterns on at least one surface. The
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Figure 1. Displacement fields for two flexural herringbone waveguides with all parameters prescribed identically except for
the orientation of the dipoles, for the case of normal incidence. The pairs are aligned to form (a) a convex entrance and
(b) a concave entrance. For an aluminium plate of thickness 5 mm, the frequency is 23.3 Hz in both cases. (Online version
in colour.)

patterns are significant in such materials because the geometric arrangement of domains
influences both the macroscopic and microscopic properties, including elastic moduli and
dielectric permittivity. The characteristic switching behaviour of a ferroelectric is also strongly
dependent on the domain pattern [3].

Another related application area is the study of organic semiconductors (OSCs), which are
used in organic field effect transistors, organic solar cells and organic LEDs [4]. All of these devices
are dependent on the solid-state packing of the OSCs, with, for example, the charge transport
of the organic field effect transistors being one important property governed by the molecular
packing arrangement [5].

In this paper, we design and model a novel herringbone system constructed within an elastic
Kirchhoff plate. We show how the parameters governing the herringbone geometry may be
tuned to optimize waveguiding and localization of flexural waves within a structured plate
(figure 1). In a similar way to the herringbone arrangement of crystals being favourable for thin
film transport [6], we show that the concept of cladding a simple two-grating waveguide with
an additional pair of appropriately located gratings enhances the waveguiding effect. Adopting
a wave scattering method and a dipole approximation assumption, we demonstrate an elegant
mathematical formulation and solution to the scattering of flexural plane waves by an elastic plate
pinned in a herringbone fashion.

In recent years, there has been substantial interest in wave propagation in structured elastic
plates, motivated by the abundance of potential applications in engineering and materials science.
The papers featuring wave scattering in the Kirchhoff model [7] and the Mindlin model [8] were
important contributions to the modelling of the dynamic response of thin elastic plates containing
impurities. The ability to customize systems to control the direction and amplification of flexural
waves is important for the design of metamaterials and microstructured systems that possess
special properties unattainable with natural materials. Recently, scattering of flexural waves in
the context of metamaterial applications was discussed in [9,10].
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An attraction of structured Kirchhoff plates is that many of the methods and ideas associated
with photonic crystals can be applied to platonic crystals [11]. The fourth-order biharmonic
operator introduces mathematical subtleties to the analysis of the scattering of flexural waves
compared with the usual second-order derivatives for the wave equation of optics and acoustics,
but with an added advantage. The biharmonic two-dimensional Green’s function is bounded,
rather than diverging logarithmically at the source point (as in the case of the Helmholtz
operator). This feature is of particular importance for the special case of periodically pinned elastic
plates.

Numerous methods have been implemented, including Fourier series expansions by, among
others, Mead (see [12] for a review), and the use of Green’s functions by Evans & Porter [13] and
Smith et al. [14], and more recently by Antonakakis and co-workers [15,16]. A complementary
approach using multipole methods has been employed in a series of papers [11,17–20], where
the limiting case of small holes with a clamped edge was considered, recovering the case of rigid
pins. In the articles [18,19], structured plates containing a finite number of infinite gratings were
considered, and their ability to trap and localize flexural wave energy was analysed. The analysis
of semi-infinite grating stacks in this article uses some similar ideas but demonstrates several
concepts and effects unique to a semi-infinite system, as will be explained below.

Bloch–Floquet analysis for an elementary cell is a common approach to the modelling of
infinite periodic systems, but for a semi-infinite platonic crystal (an infinite plate containing
a semi-infinite periodic array, not to be confused with a pinned semi-infinite plate as in, for
example, [21]) this technique is no longer directly applicable. Recent analysis for flexural wave
scattering has been conducted by Haslinger et al. [22,23] and Jones et al. [24]. The methods of
solution adopted by these authors included a discrete Wiener–Hopf method and a wave scattering
technique inspired by the classical papers of, respectively, Hills & Karp [25] and Foldy [26], for
related problems of two-dimensional membrane waves in discrete semi-infinite clusters. A review
of the problem of acoustic scattering by a two-dimensional semi-infinite periodic array of isotropic
point scatterers is provided by Linton & Martin [27].

There has also been extensive interest in the scattering of plane waves by semi-infinite
crystals in electromagnetism. Early investigations include the detailed coverage provided by
Mahan & Obermair [28] and Mead [29], where nearest-neighbour and dielectic approximations
were analysed and discussed. More recently, research has been conducted for applications
in the design of metamaterials, for example in [30], where a point dipole approximation for
sufficiently small scatterers was implemented. In addition, Belov & Simovski [30] used knowledge
of the eigenmodes for infinite crystals to give insight on the problems of scattering of plane
waves by analogously composed semi-infinite crystals. Another recent study [31] considered
the wave dynamics at the interface of a homogeneous half-space and a half-space of plasmonic
nanospheres, using a discrete Wiener–Hopf technique incorporating the assumption that each
nanosphere may be described by the single dipole approximation.

This paper addresses the scattering of flexural plane waves propagating in a structured
Kirchhoff plate. A novel design depicts a waveguide consisting of a pair of pinned gratings, which
is augmented by an extra pair of gratings, each of which is positioned exterior, but close, to the
original set. Defining shift vectors for each of the upper and lower pairs, a herringbone system is
constructed. A natural configuration to consider is a regular double-pinned structure (symmetric
herringbone). One may also classify the special cases for which the leading pair of gratings is
either the inner pair (convex entrance) or the outer pair (concave entrance), as illustrated in
figure 1. The twin parameters of magnitude and orientation of the shift vectors are used to design
herringbone systems to guide and direct waves.

The proximity of the constituent members of the shifted pairs promotes the use of a dipole
approximation for the pairs of closely spaced pins. The first part of the paper analyses the
case of a shifted pair of semi-infinite gratings in detail, with an emphasis on using the dipole
approximation. This idea is taken further by considering the replacement of each of the dipole
pairs by an array of points with two prescribed boundary conditions, zero displacement and zero
directional derivative.
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Figure 2. Two semi-infinite horizontal lines of rigid pins with spacing a in an elastic Kirchhoff plate. A plane wave is incident at
an angleψ and the lines are shifted relative to one another according to the shift vector s with orientation θ . (Online version
in colour.)

We first consider the problem of a single shifted pair in §2a,b, followed by the semi-infinite line
array of sources and dipoles in §2c. Illustrative examples and comparisons of the two approaches
are demonstrated in §2d. We then formulate the problem for the herringbone system, in both its
exact form in §3a and with the dipole approximations in §3b,c. We illustrate the waveguiding
and localization capabilities, combining the concepts of the dipole approximation and waveguide
analysis in §3d. The latter method recalls the ideas used for both the infinite grating waveguide
in [19] and the semi-infinite waveguide in [24]. The former paper incorporates the eigenvalue
problem for finite stacks of shifted infinite gratings, while the latter article uses a similar technique
to identify blocking and trapping regimes for a pair of parallel semi-infinite gratings. Concluding
remarks are drawn together in §4.

2. Kirchhoff plate with a pair of shifted semi-infinite rows of pins
We introduce a model problem for a pair of shifted semi-infinite rows of rigid pins embedded in a
Kirchhoff elastic plate (figure 2). Two-dimensional axes are chosen as shown and one line of pins
is shifted relative to the other by the shift vector s = s1i + s2j. The horizontal spacing between the
pins in a single grating is represented by a> |s|> 0. A plane wave is incident at an angle ψ on the
lines of pins, which occupy the positive half-plane x ≥ 0 (figure 2).

(a) Algebraic system
In the time-harmonic regime, the amplitude u of the flexural displacement of a homogeneous
Kirchhoff plate satisfies the governing equation

�2u − β4u = 0, (2.1)

with β4 = ρhω2/D; here h is the plate thickness, ρ is its density (mass per unit volume), ω is the
radian frequency and D = Eh3/(12(1 − ν2)) is the flexural rigidity of the plate; E and ν are the
Young modulus and the Poisson ratio of the plate, respectively.

Consider an incident field at the point r = (x, y) whose amplitude uinc(r) is given by

uinc(r) = uinc(x, y) = eiβ(x cosψ+y sinψ), |uinc| = 1. (2.2)

In the two-dimensional case, the single-source Green’s function satisfying the equation

�2g(β; r; r’) − β4g(β; r; r’) = δ(r − r’) (2.3)

is expressed as

g(β; r; r’) = i
8β2

[
H(1)

0 (β|r − r’|) + 2i
π

K0(β|r − r’|)
]

, (2.4)

with respect to the source point r’ = (x′, y′). The Green’s function is finite at this point, rather than
diverging logarithmically, as is the case for the two-dimensional Helmholtz operator. This non-
singular property is useful in the wave scattering approach we employ, whereby the scattered
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field is expressed as a sum of Green’s functions, a method widely reported for acoustics by, among
others, [25–27].

The total field is represented by the superposition of the incident and scattered fields, taking
into account all of the scatterers whose unknown intensities are to be determined. Thus, the total
flexural displacement u(x, y) for the pair of platonic gratings is expressed as

u(x, y) = uinc(x, y) +
∞∑

n=0

A(I)
n g(β; x, y; na, 0) +

∞∑
m=0

A(II)
m g(β; x, y; s1 + ma, s2), (2.5)

where the scattered field coefficients A(I)
n and A(II)

m are found for, respectively, gratings I and II
(figure 2).

Setting the displacement u(x, y) to vanish at the rigid pins located at (ja, 0) and (s1 + la, s2), we
obtain a system of linear algebraic equations for the coefficients A(I)

n and A(II)
m ,

−eiβja cosψ =
∞∑

n=0

A(I)
n g(β; ja, 0; na, 0) +

∞∑
m=0

A(II)
m g(β; ja, 0; s1 + ma, s2), j = 0, 1, 2, . . . (2.6)

and

−eiβ[(s1+la) cosψ+s2 sinψ] =
∞∑

n=0

A(I)
n g(β; s1 + la, s2; na, 0)

+
∞∑

m=0

A(II)
m g(β; s1 + la, s2; s1 + ma, s2), l = 0, 1, 2, . . . . (2.7)

This semi-infinite system may be written in the matrix form

Ga = f, (2.8)

where G is a matrix of the single-source Green’s functions (2.4), a is a vector of scattering
coefficients A(I)

n , A(II)
m and f is a vector of incident wave phases.

The system (2.6)–(2.8) resembles those derived in classical works on the scattering of acoustic
waves by semi-infinite gratings [25] and truncated systems [26]. This wave scattering method of
solution is employed in §2d for comparison with alternative approaches described in §2b,c.

(b) The kernel function
For the semi-infinite system of scatterers, one may employ a discrete Wiener–Hopf approach, as
first implemented in [25], and recently in a Kirchhoff plate setting in [22–24]. We extend the semi-
infinite domain to infinity in the negative direction by introducing the following notations for
N, M ∈ Z:

u(Na, 0) =
{

0, N ≥ 0

B(I)
N , N< 0

(2.9)

u(s1 + Ma, s2) =
{

0, M ≥ 0

B(II)
M , M< 0

(2.10)

and uinc(Na, 0) = F(I)
N , uinc(s1 + Ma, s2) = F(II)

M . (2.11)

Here, B(I)
N and B(II)

M represent the unknown amplitudes of the total flexural displacement at the
points (Na, 0) and (s1 + Ma, s2) for, respectively, N, M< 0, i.e. in the region to the left of the pair of
gratings. The field incident at the array points is denoted by F(I)

N , F(II)
M for all N, M ∈ Z.

Consider the displacement at two field points rN = (Na, 0) and rM = (s1 + Ma, s2). Using
definitions (2.9)–(2.11), we extend the evaluation of the coefficients A(I)

n , A(II)
m to m, n< 0, setting
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them to be zero because the pins are not present in this region. Similarly, the notations of B(I)
N , B(II)

M

are extended to all N, M ∈ Z, assuming that B(I)
N , B(II)

M = 0 for N, M ≥ 0.
Applying the discrete Fourier transform to equations (2.6), (2.7) and (2.9)–(2.11) and using the

Fourier variable k, we deduce, respectively,

∞∑
N=−∞

B(I)
N eikNa =

∞∑
N=−∞

F(I)
N eikNa +

∞∑
N=−∞

∞∑
n=−∞

A(I)
n g(β; Na, 0; na, 0) eikNa

+
∞∑

N=−∞

∞∑
m=−∞

A(II)
m g(β; Na, 0; s1 + ma, s2) eikNa (2.12)

and
∞∑

M=−∞
B(II)

M eikMa =
∞∑

M=−∞
F(II)

M eikMa +
∞∑

M=−∞

∞∑
n=−∞

A(I)
n g(β; s1 + Ma, s2; na, 0) eikMa

+
∞∑

M=−∞

∞∑
m=−∞

A(II)
m g(β; s1 + Ma, s2; s1 + ma, s2) eikMa. (2.13)

By a change of indices of summation, the above equations can be rewritten in the form

∞∑
N=−∞

B(I)
N eikNa =

∞∑
N=−∞

F(I)
N eikNa +

∞∑
n=−∞

A(I)
n eikna

∞∑
j=−∞

g(β; ja, 0; 0, 0) eikja

+
∞∑

m=−∞
A(II)

m eikma
∞∑

j=−∞
g(β; ja, 0; s1, s2) eikja (2.14)

and
∞∑

M=−∞
B(II)

M eikMa =
∞∑

M=−∞
F(II)

M eikMa +
∞∑

n=−∞
A(I)

n eikna
∞∑

j=−∞
g(β; s1 + ja, s2; 0, 0) eikja

+
∞∑

m=−∞
A(II)

m eikma
∞∑

j=−∞
g(β; s1 + ja, s2; s1, s2) eikja. (2.15)

Here, we adopt the notation of [22–24],

B̂(α)
− =

∞∑
N=−∞

B(α)
N eikNa, F̂(α) =

∞∑
N=−∞

F(α)
N eikNa, Â(α)

+ =
∞∑

n=−∞
A(α)

n eikna, α = I, II. (2.16)

Using the quasi-periodicity of the gratings, we define the grating Green’s function by

Ĝ(β, k; ξ (1); ξ (2)) =
∞∑

j=−∞
g(β; jae1 + ξ (1); ξ (2)) eikja. (2.17)

We see from (2.14) and (2.15) that the only choices of ξ (1) and ξ (2) that are required are the zero
vector and s, which identify the front pins of the two shifted gratings. The additional summation
over the coefficients A(α)

n in (2.14), (2.15) is then applied and we obtain the functional equation(
B̂(I)

−
B̂(II)

−

)
=
(

Ĝ(β, k; 0; 0) Ĝ(β, k; 0; s)
Ĝ(β, k; s; 0) Ĝ(β, k; s; s)

)(
Â(I)

+
Â(II)

+

)
+
(

F̂(I)

F̂(II)

)
, (2.18)

whose kernel function is a matrix of the grating Green’s functions G. With reference to (2.17) and
the symmetry relations

Ĝ(β, k; 0; s) = Ĝ(β, k; −s; 0) and Ĝ(β, k; s; s) = Ĝ(β, k; 0; 0), (2.19)
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the system (2.18) can be rewritten so that all the elements are referenced to the origin (ξ (2) = 0):(
B̂(I)

−
B̂(II)

−

)
=
(

Ĝ(β, k; 0; 0) Ĝ(β, k; −s; 0)
Ĝ(β, k; s; 0) Ĝ(β, k; 0; 0)

)(
Â(I)

+
Â(II)

+

)
+
(

F̂(I)

F̂(II)

)
. (2.20)

Equations (2.18) and (2.20) are of the form

b− = Gα+ + γ , (2.21)

with the vectors b−, α+, γ representative of scattering coefficients for x< 0, x ≥ 0 and the incident
field, respectively.

Multiple gratings extend the case of the scalar Wiener–Hopf equation, analysed in [22,24], to
the matrix form. A thorough study of the interaction of a time-harmonic plane wave with a semi-
infinite lattice of identical circular cylinders was provided in [32,33], whereby the assumption that
finite-sized cylinders do not scatter isotropically led to a matrix Wiener–Hopf equation. Tymis
& Thompson [33] adopted a method using the truncation of multipole expansions to derive an
approximate system, solved by matching poles and residues on opposing sides. In this way, the
necessity to factorize the matrix kernel was avoided.

Factorization of the matrix kernel G is also not required in our approach. As discussed
in [22–24], an important feature of the discrete Wiener–Hopf method for semi-infinite platonic
crystals is the direct connection between the kernel function and the quasi-periodic Green’s
functions for analogous infinite systems. Zeros of these functions correspond to Bloch modes,
meaning that analysis of the determinant of G provides information to identify special frequency
regimes that support transmission and reflection effects in semi-infinite grating pairs.

We refer to [34], where the kernel function of the Wiener–Hopf equation was used to analyse
the properties of waves in a structured medium. Specifically in ch. 11 of [34], Slepyan evaluated
the global-to-local energy release ratio associated with the advancing crack without solving the
Wiener–Hopf equation, instead using only its kernel function. In a similar way, we use the kernel
G of the Wiener–Hopf formulation above in order to make a formal connection with the grating
Green’s function. This includes essential information about the waveguide modes and blockages
of waves, which is discussed further in subsequent sections.

We consider the case where the pair of semi-infinite gratings are close to one another. The
off-diagonal entries Ĝ(β, k; ξ (1); ξ (2)) are approximated by expanding about the origin for |ξ | � 1.
The derivation of these representations, and illustrative examples demonstrating the efficiency of
the approximation, are presented in the electronic supplementary material, appendix A. In the
next section, we present the related concept whereby the pair of closely spaced pinned gratings is
replaced by a single line of point inclusions to which we assign a source and a dipole.

(c) Single semi-infinite line of sources and dipoles
For the case of closely spaced gratings in figure 2 (|s| � 1), the problem may be converted to that
for a single array of scatterers, each of which exhibits monopole- and dipole-scattering responses.

(i) Notations and definitions

The scattered field may be approximated in the form

usc(ξ ) � Sg(β; ξ ; ξd) + Dq · ∇
ξ d g(β; ξ ; ξd), (2.22)

where q is a unit vector. The first term in (2.22) is referred to as the source term at ξd, and its
coefficient S is the source strength. The second term in (2.22) is referred to as the dipole term at
ξd, and D is the dipole coefficient. We note that q characterizes the orientation of the dipole; the
angle between the direction of q and the direction of the positive x-axis is referred to as the dipole
angle θ , and is prescribed in the interval 0 ≤ θ ≤ π . The approximation discussed here employs a
displacement field ansatz using a Green’s function expansion.
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Consider the simple case of a pair of pins positioned at, respectively, ξ (1) and ξ (2). The scattered
displacement field usc may be expressed in the form

usc(ξ ) = A1g(β; ξ ; ξ (1)) + A2g(β; ξ ; ξ (2)), (2.23)

where A1, A2 are scattering coefficients, g is the single-source Green’s function (2.4) and ξ = (x, y)
is a general field point. This representation can be rewritten as

usc(ξ ) = 1
2 (A1 + A2)[g(β; ξ ; ξ (1)) + g(β; ξ ; ξ (2))] + 1

2 (A2 − A1)[g(β; ξ ; ξ (2)) − g(β; ξ ; ξ (1))]. (2.24)

Consider the case when |ξ (2) − ξ (1)| � 1, and ξ is fixed. Taking ξ (2) = ξ (1) + s, |s| � 1,

g(β; ξ ; ξ (1) + s) − g(β; ξ ; ξ (1)) = s · ∇
ξ (1) g(β; ξ ; ξ (1)) + O(|s|2). (2.25)

Then the approximation to the scattered field is

usc(ξ ) � 1
2 (A1 + A2)[2g(β; ξ ; ξ (1)) + s · ∇

ξ (1) g(β; ξ ; ξ (1))] + 1
2 (A2 − A1)s · ∇

ξ (1) g(β; ξ ; ξ (1))

� (A1 + A2)g(β; ξ ; ξ (1)) + A2 s · ∇
ξ (1) g(β; ξ ; ξ (1)). (2.26)

Remark. Alternatively, one may expand about the vector ξd, halfway between the two sources

ξd = ξ (1) + 1
2 s and ξd = ξ (2) − 1

2 s. (2.27)

Substituting these expressions into (2.24), we obtain

usc(ξ ) � (A1 + A2)g(β; ξ ; ξd) + A2 − A1

2
s · ∇

ξ d g(β; ξ ; ξd). (2.28)

We note that this representation is characteristic of a load comprising the sum A1 + A2 for the
source strength, and the difference A2 − A1 for the dipole coefficient. However, for the subsequent
derivations and illustrative examples, we use the representation (2.26), where the approximation
is determined by expanding about the point ξ (1). These expressions contain the familiar A1 + A2
form for the source strengths, but the dipole coefficient is replaced by A2|s|.

(ii) Dipole approximation to replace two semi-infinite rows of pins

We consider the alternative formulation for the problem described in §2b, whereby the two arrays
of pins are replaced by one semi-infinite line, and both a source strength Sn and a dipole coefficient
Dn are associated with each member of the array. We note that, for the sake of convenience, the
coefficients Dn are combined with the non-unit shift vector s (i.e. for Dn of (2.22), |s|Dn =Dn), but
the term ‘dipole coefficients’ will be used for Dn in what follows. We impose two conditions on
the total displacement u(x, y) defined at each point ξ = (ja, 0)

u(ja, 0) = 0; s · ∇u|ξ=(ja,0) = ∂u
∂s

(ja, 0) = 0, (2.29)

which physically implies that the source and the dipole are both located at the point ξ = (ja, 0).
Recalling equations (2.5) and (2.26), we write the approximation to the total displacement field

at a point ξ in the form

u(ξ ) � uinc(ξ ) +
∞∑

n=0

[Sng(β; ξ ; ξ (1)) + Dns · ∇
ξ (1) g(β; ξ ; ξ (1))]|

ξ (1)=(na,0). (2.30)

Consider ξ = (ja, 0), j = 0, 1, 2, . . .. Referring to equations (2.6), (2.7), we have a system of linear
algebraic equations for the coefficients Sn and Dn,

− eiβja cosψ =
∞∑

n=0

[Sng(β; ja, 0; na, 0) + Dns · ∇
ξ (1) g(β; ja, 0; na, 0)], j = 0, 1, 2, . . . (2.31)
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and

−s · ∇ξ eiβξ ·(cosψ ,sinψ)|ξ=(ja,0) =
∞∑

n=0

[Sn s · ∇ξ g(β; ja, 0; na, 0)

+ Dn s · ∇ξ (s · ∇
ξ (1) g(β; ja, 0; na, 0))], j = 0, 1, 2, . . . . (2.32)

The notation for the directional derivatives distinguishes between differentiating with respect
to the first and second arguments, ξ = (ja, 0) and ξ (1) = (na, 0). The details required to evaluate
the coefficients Sn, Dn using the wave scattering method are presented in the electronic
supplementary material, appendix B; see equations (B.5), (B.6).

Following the discrete Wiener–Hopf derivation of §2b, we recall the notation of (2.9)–(2.11)
for the unknown displacement amplitudes in the ‘reflection’ region for n< 0, and for the
incident plane wave coefficients. Consider a specific point ξ = (Na, 0) and extend the definitions
of Sn and Dn for n< 0. Applying the discrete Fourier transform to (2.31), (2.32), as in §2b,
we derive the algebraic system of equations for the Wiener–Hopf formulation for the dipole
approximation:

∞∑
N=−∞

BN eikNa =
∞∑

N=−∞
FN eikNa

+
∞∑

n=−∞
eikna(Sn + Dn s · ∇

ξ (1) )

⎛
⎝ ∞∑

j=−∞
g(β; ja, 0; 0, 0) eikja

⎞
⎠ (2.33)

and
∞∑

N=−∞
B′

N eikNa =
∞∑

N=−∞
F′

N eikNa

+
∞∑

n=−∞
eikna s · ∇ξ (Sn + Dn s · ∇

ξ (1) )

⎛
⎝ ∞∑

j=−∞
g(β; ja, 0; 0, 0) eikja

⎞
⎠ , (2.34)

where we note that now ξ = (ja, 0) and ξ (1) = (0, 0). Here we have the following definitions for
BN , B′

N , FN , F′
N for N ∈ Z:

u(Na, 0) =
{

0, N ≥ 0

BN , N< 0
(2.35)

s · ∇ξ u|(Na,0) =
{

0, N ≥ 0

B′
N , N< 0

(2.36)

and uinc(Na, 0) = FN , −s · ∇ξ uinc|(Na,0) = −iβ(s1 cosψ + s2 sinψ) eiβ cosψNa = F′
N . (2.37)

We note that BN = 0, B′
N = 0 for N ≥ 0. We observe that, in this Wiener–Hopf formulation

for the dipole approximation, we employ only the quasi-periodic Green’s function (2.17)
defining a single array of points Ĝ(β, k; 0; 0) in contrast with the full system (2.20),
where the kernel matrix includes three grating Green’s functions, shifted relative to one
another.

The grating Green’s function Ĝ(β, k; 0; 0) is an important and well-studied object in the
analysis of platonic grating systems, and has been used numerous times in the literature;
see, for example, [13–20]. Refined accelerated convergence formulae have been derived [18],
and are implemented here in finding the zeros of the determinants of the kernel matrices for
the corresponding semi-infinite problems. We note that alternative methods for evaluating the
lattice and grating Green’s functions in pinned plates have been discussed in [13,14,24,35],
among others.

 on April 23, 2018http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


10

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20170590

...................................................

The discrete Wiener–Hopf derivation described above, and its kernel in particular, provides
a highly efficient procedure for determining the ranges of frequency for scattering effects and
trapped waveforms. The motivation for formulating the Wiener–Hopf problem is not to find
its explicit solution but to use the connection between its kernel and quasi-periodic Green’s
functions, the zeros of which give us the frequencies and incident angles to demonstrate standing
waves and localization in the semi-infinite grating systems.

(d) Illustrative examples
In this section, we demonstrate the efficacy of the dipole approximation by comparing both
scattering coefficients and the resulting displacement field plots for the approaches described
in §2b,c. Referring to equation (2.30), the dipole approximation yields Sn (source strengths) and
Dn (dipole coefficients), where n denotes the pin number. The direct approach for a pair of semi-
infinite gratings in §2b determines coefficients A(I)

n (for the lower grating) and A(II)
n (for the upper

grating).
By analogy with equation (2.26), the coefficients Sn, Dn may be associated with the coefficient

terms A(I)
n + A(II)

n and A(II)
n , respectively. Here we include several numerical examples, with

a selection of graphical plots of coefficients for a range of parameter settings, noting that
periodicity/spacing a is set to unity. The method for solving the system (2.31), (2.32) for a
truncated semi-infinite system is outlined in detail in the electronic supplementary material,
appendix B, where the truncation parameter L indicates the number of points in the array. The
analysis involves the use of an asymptotic term for the logarithmic singularity arising for the
second derivative terms in (2.32) when j = n.

(i) Scattering and transmission resonance

In figure 3, we plot curves of the moduli for all four sets of the coefficients, two from each of the
formulations, for truncation parameter L = 160. The shifted pair coefficients |A(II)

n | and |A(I)
n + A(II)

n |
are plotted with solid (upper) curves and dotted (lower) curves, respectively (see the key within
the figure). The dipole coefficients |Dn| and source strengths |Sn| are illustrated by dashed
(upper) curves and solid (lower) curves. For a fixed shift vector s = (0.005, 0.015), with |s| =
0.0158 and dipole angle θ = arccot(s1/s2) = 1.25, we consider four angles of incidence in radians:
ψ = 0.2, 0.5, 1.0 and 1.2. The coefficients are plotted for β in the range 2 ≤ β ≤ 5.

The agreement for the coefficients representing sources (that is, Sn and A(I)
n + A(II)

n ) is excellent
for all cases as shown in figure 3, where the two curves are visually indistinguishable in each of
parts (a)–(d). There is also very good agreement between |Dn| and |A(II)

n | for all choices of ψ . We
note that, as ψ increases from figure 3a to figure 3d, the moduli of the dipole coefficients increase,
and that the shape of the curve is qualitatively the same for all values of ψ considered. Note that
the typical sharp peak in the dipole coefficient |Dn| (or |A(II)

n | for the pair) occurs for a higher value
of β as ψ is increased, and its frequency is in the neighbourhood of that of the dip for the source
strength curves.

In this platonic setting, the sharp peaks are associated with additional spectral orders
becoming propagating (rather than evanescent), and are linked to transmission resonances. For
this example of |s| = 0.0158, the dipole approximation appears to be robust since the singularity
is well approximated for both formulations. We illustrate an example in figure 4 for one of the
incident anglesψ = 0.5 for the spectral parameter β = 3.33, which is just below the peak frequency
arising for β = 3.35 in figure 3b.

In figure 4a, we illustrate the transmission resonance using energy plots for the zeroth order
for both an infinite single grating and a pair of shifted gratings (defined by s = (0.005, 0.015)).
Normalized reflected (R0) and transmitted (T0) energies for the zeroth order are plotted versus
the spectral parameter β. The reflected energy for the single grating is shown with the solid curve
with an initial value of R0 ≈ 0.9, and the Wood anomaly at β � 3.35 signifies the additional order
−1 passing from evanescence to propagation. This frequency coincides with both a resonance in
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Figure 3. Comparison of themoduli of scattering coefficients evaluated using thewave scatteringmethod (2.6)–(2.8) for a pair
of shifted gratings (source terms indicated by dotted lower curves and dipole terms by solid upper curves; see key) and a single
semi-infinite line (2.31) and (2.32) of sources (|Sn|, solid lower curves) and dipoles (|Dn|, dashed upper curves). For shift vector
s= (0.005, 0.015) with |s| = 0.0158, θ = 1.25, L= 160, we consider four angles of incidence: (a)ψ = 0.2, (b)ψ = 0.5, (c)
ψ = 1.0, (d)ψ = 1.2. (Online version in colour.)

transmission (solid curve) and a zero in reflection (dashed curve) for the pair for the zeroth order
(by the conservation of energy). Note that, for β > 3.35, the energy for the zeroth order no longer
sums to unity owing to the additional contributions (not shown here in figure 4a) to the total
energy from the new propagating order.

In figure 4b,c, we show how this resonance for the infinite system is manifested in the
semi-infinite system. For s = (0.005, 0.015), ψ = 0.5, β = 3.33, we plot the real part of the total
displacement field in figure 4b for the first 30 pinned pairs (0 ≤ n ≤ 29), with the direction
of the incident plane wave indicated by the arrow. The real parts of the corresponding
coefficients are shown in figure 4c. We observe the transmission resonance associated with the
transition of an evanescent to a propagating order. Although scattering effects are present in
the vicinity of the leading vertex, there is clear evidence of transmission along, and behind, the
grating pair.

In particular, the large amplitudes and envelope function for the scattering coefficients A(II)
n

of figure 4c are matched by the displacement field along the line of the first 30 pairs of pins
in figure 4b. This example coincides with the sharp peaks in both figures 3b and 4a. The zero
in transmission (a reflection mode) for the pair at β � 3.0 in figure 4a is illustrated for the
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Figure 4. Plane wave withψ = 0.5 incident on a pair of gratings with a= 1.0, s= (0.005, 0.015). (a) Normalized reflected
energy for the zeroth propagating order versusβ for a single line of pins (solid curve with starting value of R0 ≈ 0.9) and a pair
of shifted infinite gratings defined by s (dashed), and normalized transmitted energy for the pair (solid). Semi-infinite system
(b) real part of the total displacement field for the first 30 pairs of pins for β = 3.33, L= 100. (c) Real parts of the scattering
coefficients for the first 30 pins. (d) Real part of the total displacement field forβ = 3.0; all other parameters are the same as
in (b). (Online version in colour.)

semi-infinite system in figure 4d, which not only exhibits strong reflection but also, on comparison
with the field in figure 4b, further emphasizes the transmission regime for β = 3.33.

(ii) Magnitude and orientation of dipole

The dominance of the dipole terms over the source terms for the reflection regime of figure 4d
is shown in figure 5a, where four values of |s| (the first of which is |s| = 0.0158) are shown for
the parameter settings of ψ = 0.5, β = 3.0. However, as |s| is increased, the dipole coefficients
tend towards those of the sources. We also include a study of magnitude |s| for the transmission
case β = 3.33 in figure 5b. Note that, for the resonant frequency, the agreement of Dn and A(II)

n is
reduced.

Clearly, the magnitude of |s| is linked to both the efficiency of the dipole approximation
and the relationship between the dipole and source coefficients. A natural question to ask
is how does the orientation of the dipole affect the scattering properties of the system? We
consider the case of fixing |s| = 0.005 and varying the dipole angle in the range 0 ≤ θ ≤ π
(figure 2). Using the same value of β = 3.33, we investigate the case of normal incidence, ψ = 0, in
figure 6.

We consider two pairs of gratings for each dipole angle θ , one oriented upwards, with
which we associate the superscript +, and one oriented downwards (effectively defined by −θ ),
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n |. (b) Scattered field for θ = 0, |s| = 0.005,
ψ = 0,β = 3.33. (Online version in colour.)

with which we associate the superscript −. The moduli of the coefficients for seven choices
of θ , multiples of π/6, are plotted in figure 6a. We observe that, in isolation, there is virtually
no difference in the results for the upwardly and downwardly oriented shifted pairs. The
formulation of a herringbone system by combining these pairs is considered in the next section,
including an analysis of the effect of the direction of the dipoles, where naturally the roles of ±θ
are much more significant.

In figure 6a, we note that, as θ is increased, the dipole coefficients (D+
n and D−

n ) are reduced, and
that the dipole coefficients dominate the source strengths with the notable exception of θ = π/2,
which leads to the extreme reduction of all coefficients. This suggests that this orientation of the
dipoles for |s| � 1, for which the source and dipole coefficients are comparable, replicates the line
of equally spaced pins that does not support Rayleigh–Bloch modes [13]. For the parallel direction
with θ = 0, however, some localization is observed, as indicated by the associated scattered field
in figure 6b for ψ = 0, |s| = 0.005.
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3. Herringbone system of rigid pins
Consider a herringbone pattern in an elastic Kirchhoff plate, as shown in figure 7, where the upper
and lower pairs are characterized by, respectively, the shift vectors s = (s1, s2) and t = (t1, t2), and
the spacings a1 and a2. The separation of the pairs of gratings is denoted by b. Note the labelling
of the gratings (I)–(IV), which will be used in the examples and their captions that follow.

(a) Algebraic system
A natural configuration arises for a1 = a2 and s1 = t1, t2 = −s2 for s1, s2 > 0, |s| � 1, which may be
thought of as a symmetric herringbone with a convex entrance, and a model for a regular double-
pinned structure. One may also consider the special cases of s1 < 0 (concave entrance) and t = −s,
where the origin of the coordinate axes is shifted such that s and t both lie on the line y = θx
(wedge).

The formulation of the problem is similar to that outlined in §2. We first consider the general
case illustrated by figure 7. The total flexural displacement u(x, y) is given by

u(x, y) = uinc(x, y) +
∞∑

n=0

A(I)
n g

(
β; x, y; na1,

b
2

)
+

∞∑
m=0

A(II)
m g

(
β; x, y; s1 + ma1, s2 + b

2

)

+
∞∑

c=0

A(III)
c g

(
β; x, y; ca2, − b

2

)
+

∞∑
d=0

A(IV)
d g

(
β; x, y; t1 + da2, t2 − b

2

)
, (3.1)

where the scattering coefficients A(I)
n , A(II)

m , A(III)
c , A(IV)

d are to be determined. In a similar way to §2,
boundary conditions are applied so that the total displacement u(x, y) vanishes at the rigid pins.
We include the details of the method in the electronic supplementary material, appendix C. Here
we present only the final results for the case a1 = a2.

Adopting the notations of (2.16), but for α = I–IV, and the shorthand notation from (2.17)
together with the additional vector τ = (0, b/2), we obtain the functional equation

⎛
⎜⎜⎜⎜⎜⎜⎝

B̂(I)
−

B̂(II)
−

B̂(III)
−

B̂(IV)
−

⎞
⎟⎟⎟⎟⎟⎟⎠

= K

⎛
⎜⎜⎜⎜⎜⎝

Â(I)
+

Â(II)
+

Â(III)
+

Â(IV)
+

⎞
⎟⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝

F̂(I)

F̂(II)

F̂(III)

F̂(IV)

⎞
⎟⎟⎟⎟⎠ , (3.2)
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with matrix kernel

K =

⎛
⎜⎜⎜⎝

Ĝ(β, k; τ ; τ ) Ĝ(β, k; τ ; τ + s) Ĝ(β, k; τ ; −τ ) Ĝ(β, k; τ ; t − τ )
Ĝ(β, k; τ + s; τ ) Ĝ(β, k; τ + s; τ + s) Ĝ(β, k; τ + s; −τ ) Ĝ(β, k; τ + s; t − τ )
Ĝ(β, k; −τ ; τ ) Ĝ(β, k; −τ ; τ + s) Ĝ(β, k; −τ ; −τ ) Ĝ(β, k; −τ ; t − τ )

Ĝ(β, k; t − τ ; τ ) Ĝ(β, k; t − τ ; τ + s) Ĝ(β, k; t − τ ; −τ ) Ĝ(β, k; t − τ ; t − τ )

⎞
⎟⎟⎟⎠ . (3.3)

Note that all the elements are referenced to the origin illustrated in figure 7. Using (2.19), the
kernel can be rewritten in the simpler form

K =

⎛
⎜⎜⎜⎝

Ĝ(β, k; 0; 0) Ĝ(β, k; −s; 0) Ĝ(β, k; 2τ ; 0) Ĝ(β, k; 2τ − t; 0)
Ĝ(β, k; s; 0) Ĝ(β, k; 0; 0) Ĝ(β, k; 2τ + s; 0) Ĝ(β, k; 2τ + s − t; 0)

Ĝ(β, k; −2τ ; 0) Ĝ(β, k; −2τ − s; 0) Ĝ(β, k; 0; 0) Ĝ(β, k; −t; 0)
Ĝ(β, k; t − 2τ ; 0) Ĝ(β, k; t − s − 2τ ; 0) Ĝ(β, k; t; 0) Ĝ(β, k; 0; 0)

⎞
⎟⎟⎟⎠ . (3.4)

As previously discussed for the constituent shifted pairs in §2b,c, the zeros of the kernel matrix
determine frequency regimes in which the semi-infinite systems may exhibit interesting scattering
patterns. The same is true for the herringbone systems described and illustrated here.

(b) Sources and dipoles
In a similar way to §2c, we may consider the herringbone system as a pair of semi-infinite lines
with both a source strength Sn and a dipole coefficient Dn associated with an individual member
of the array. Each pair of gratings is approximated as a single array of point scatterers located
at O±

j = (ja, ±b/2), as illustrated for the symmetric herringbone with t = s− = (s1, −s2) in figure 8.
Following the approach defined in equations (2.29) and (2.30), we give the formulation for the
herringbone. We begin by imposing the boundary conditions

u|r=O±
j

= 0,
∂u
∂s±

∣∣∣∣
r=O±

j

= 0, (3.5)

where we employ the expression s+ = s for ease of notation. The approximation to the total
flexural displacement is expressed as

u(r) � uinc(r) +
∑
±

⎡
⎣ ∞∑

j=0

S±
j g(β; r; O±

j ) +
∞∑

j=0

D±
j
∂g
∂s± (β; r; O±

j )

⎤
⎦ . (3.6)

Here we associate the coefficients S±
j with the strengths of the sources, and D±

j with the

coefficients of the dipoles as indicated in figure 8, and g(β; r; O±
j ) is the single-source Green’s

function as defined by equation (2.4).
Substituting the constraints (3.5) into (3.6), we obtain two systems of equations,

∑
±

⎡
⎣ ∞∑

j=0

S±
j g(β; r; O±

j ) +
∞∑

j=0

D±
j
∂g
∂s± (β; r; O±

j )

⎤
⎦
∣∣∣∣∣∣
r=O±

k

= −uinc(O±
k ), k = 0, 1, 2, . . . (3.7)

and

∑
±

⎡
⎣ ∞∑

j=0

S±
j
∂g
∂sr

(β; r; O±
j ) +

∞∑
j=0

D±
j
∂

∂sr

∂g
∂s± (β; r; O±

j )

⎤
⎦
∣∣∣∣∣∣
r=O±

k

= − ∂

∂sr
uinc(O±

k ), (3.8)

where

∂

∂sr
=

⎧⎪⎨
⎪⎩

∂

∂s+ for r = O+
k ,

∂

∂s− for r = O−
k .

(3.9)
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Figure 8. (a) Symmetric herringbone system of gratings defined by periodicity a and shift vectors s±. (b) The source, dipole
approximations. (Online version in colour.)

For the sake of numerical illustrations, we introduce the truncation parameter L to represent the
number of points in each constituent grating of a restricted system. In that case, we have a 4L × 4L
linear algebraic system (3.7)–(3.9) for {S±

j , D±
j }L−1

j=0 .

(c) Algebraic systems in matrix form for the wave scattering method
The full herringbone system comprising four pinned gratings whose point scatterers enforce zero
displacement is defined by (C.2)–(C.5) in the electronic supplementary material. Its matrix form
is given by ⎛

⎜⎜⎜⎝
F(I)

F(II)

F(III)

F(IV)

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

M(11) M(12) M(13) M(14)

M(21) M(11) M(23) M(24)

M(13) M(32) M(11) M(34)

M(41) M(24) M(43) M(11)

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

A(I)

A(II)

A(III)

A(IV)

⎞
⎟⎟⎟⎠ , (3.10)

where the various terms M(ij) are block matrices. For the truncated semi-infinite system with
truncation parameter L, these blocks are of size L × L and each of F(I) to F(IV) and A(I) to A(IV)

is an L × 1 column vector. The 2L × 2L matrix equation for the line array of sources and dipoles
approximating a shifted pair is presented in equations (B.5), (B.6) in the electronic supplementary
material, appendix B, where the F terms incorporate two boundary conditions (2.29) rather than
only zero displacement as in (3.10).

For the system (3.7)–(3.9), we derive a similar truncated system where the 4L × 4L matrix may
be considered as an array of four 2L × 2L block matrices. The two blocks on the main diagonal
are determined using the system (B.5), (B.6), provided that we replace the arguments (ja, 0) with
(ja, ±b/2). Here we shall denote them by M(++)(s+) and M(−−)(s−), where + denotes the upper
line and − the lower line (see (3.15) below).

The off-diagonal block matrices take into account the interaction of the upper and lower line
arrays, and therefore require expressions that differ from the isolated shifted pair given by (B.3),
(B.4). For the first derivative terms in equations (3.7), (3.8), we deduce [36]

∂g
∂s± (β; r; O±

j ) = i
8β

[
H(1)

1 (βρξ ) + 2i
π

K1(βρξ )
](

s1(x − ja)
ρξ

± s2(y ∓ b/2)
ρξ

)
, (3.11)

where r = (ka, ∓b/2), k = 0, 1, 2, . . . and ρξ is the distance between r and O±
j , as defined in (B.1) in

the electronic supplementary material. The important difference is that the second group of terms
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involving s2 no longer vanish, because y = ∓b/2 is always of opposite sign to the y-component of
O±

j . Similarly,

∂g

∂s±
r

(β; r; O±
j ) = − i

8β

[
H(1)

1 (βρξ ) + 2i
π

K1(βρξ )
](

s1(x − ja)
ρξ

± s2(y ∓ b/2)
ρξ

)
. (3.12)

As one would expect, the second derivatives in (3.8) also include more terms:

∂

∂sr

∂g
∂s± (β; r; O±

j ) = s1

⎧⎨
⎩

s1g(1)
ξ

ρξ
+
ρξβ[H(1)

0 (βρξ ) − (2i/π )K0(βρξ )] − 2g(1)
ξ

ρ3
ξ

×
(

s1(x − ja)2 ± s2(x − ja)
(

y ∓ b
2

))}

± s2

⎧⎨
⎩±

s2g(1)
ξ

ρξ
+
ρξβ[H(1)

0 (βρξ ) − (2i/π )K0(βρξ )] − 2g(1)
ξ

ρ3
ξ

×
(

s1(x − ja)
(

y ∓ b
2

)
± s2

(
y ∓ b

2

)2
)}

, (3.13)

where once again ρξ is the distance between r and O±
j and g(1)

ξ is defined as (see also (B.2) in the
electronic supplementary material)

g(1)
ξ (β; r; O±

j ) = H(1)
1 (βρξ ) + 2i

π
K1(βρξ ). (3.14)

The matrix equation for the system may be expressed in the following way:(
F+

F−

)
=
(

M(++)(s+) M(+−)(s−)
M(−+)(s+) M(−−)(s−)

)(
T +

T −

)
, (3.15)

where the two 2L × 2L block matrices M(−+) and M(+−) give the information regarding the
interaction of the upper array (governed by the shift vector s+) and the lower array (characterized
by s−), evaluated using equations (3.11)–(3.14). The two column vectors have size 4L × 1,
consisting of two concatenated 2L × 1 vectors defined by

F+ =
(

F+
1

F+
2

)
, F− =

(
F−

1
F−

2

)
; T + =

(
S+

D+

)
and T − =

(
S−

D−

)
. (3.16)

The source and dipole coefficients for the upper and lower arrays in figure 8, S±
j , D±

j , are

represented by the column vectors on the right-hand side of (3.15). The column vectors F±
1 and F±

2
represent the two sets of boundary conditions on the right-hand sides of (3.7), (3.8) for each of the
corresponding line arrays. In the illustrative examples that follow, both systems (3.10) and (3.15)
are solved and compared.

(d) Herringbone systems for waveguiding and localization
We recall the work of Jones et al. [24], who used the connection between the channelling of
trapped modes in a pair of semi-infinite gratings and the Bloch–Floquet analysis for the infinite
waveguide. The Bloch modes are obtained by solving the eigenvalue problem for the matrix of
governing grating Green’s functions, which is equivalent to finding the zeros of the determinant
of the kernel matrix of Green’s functions presented in [24] and here. Considering the case of
normal incidence, the authors presented a contour plot in fig. 3(b) of [24] that identifies the range
of values of the spectral parameter β and grating separation b to support waveguide modes. An
effective waveguide model for the simply supported boundary condition was derived, which can
be used in conjunction with the Bloch–Floquet analysis to estimate the wavenumber kx, and hence
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Figure 9. Symmetric herringbone systemwith s= (0.2, 0.1), b= √
2, a1 = a2 = 1. (a) Identification of Blochmodes for the

infinite herringbone system for kx = 1.1. Solid curve shows eigenmodes for β � 2.84, 4.55. The upper dashed (referencing
the top left corner) curve shows modes for the inner pair (gratings I and III) with spacing b= √

2, and the lower dashed curve
represents the shifted pair (gratings I and II) defined by s. The dotted curve shows the outer pair (gratings II and IV)with spacing√
2 + 0.2. Parts (b–d) feature the total displacement field plots for an incident plane wave withψ = 1.17 andβ = 2.82 for

L= 100,with thefirst 40 pins shown. (b) Shifted pair (gratings I and II) definedby s= (0.2, 0.1). (c) Inner pair (gratings I and III)
separated by b= √

2. (d) Symmetric herringbone (gratings I–IV) defined by the parameters b and s, s−. (Online version in
colour.)

wavelength λw, for the first-order waveguide modes

b = π√
β2 − k2

x

, λw = 2π
kx

and λext = 2π
β

, (3.17)

where the wavelength exterior to the gratings is denoted by λext.
A similar approach was implemented by Haslinger et al. [19] for the connection between

the scattering problem and the infinite grating system’s waveguide modes. Using the related
eigenvalue problem for a governing matrix of grating Green’s functions dependent on β and
kx, and incorporating spacing b, solutions are obtained in the form of localized minima of the
logarithm of the determinant function (see figure 9a here, for example). In conjunction with an
approximate waveguide model for the Helmholtz operator (neglecting the evanescent modes
arising for the biharmonic case), table 1 in [19], and updated here in the electronic supplementary
material, appendix D, presents a selection of illustrative parameter settings. For gratings with unit
periodicity (a = 1), various pairs of (β, kx) values determine resonant trapped modes for spacings
b that are well approximated by (3.17).
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There is good correspondence between the β, b pairs in that table and those featured in the
white strip illustrating the approximate regions of roots in fig. 3(b) of [24]. The additional feature
of table 1 in the electronic supplementary material, appendix D, i.e. providing associated kx

values, may be used to extend this approach from normal to oblique incidence. The projection
onto the waveguide’s axis of symmetry,

kx = β cos (ψ), 0 ≤ψ ≤ π , (3.18)

is used to incorporate oblique angles of incidence ψ that correspond to the wavenumbers kx for
normally incident resonant modes in [24]. Both methods provide invaluable insight for the first-
order periodic patterns for both the pair and the herringbone systems.

In the examples that follow, the periodicity a of all gratings is taken to be unity. We also refer
to various constituent pairs of gratings within the herringbone structures. Recalling figure 7, we
denote gratings I and III, separated by b, as the inner pair. The outer pair refers to gratings II and
IV, and a shifted pair is either I, II or III, IV.

(i) Waveguide modes

In this section, we describe two examples of waveguide modes. In both cases, we consider a
symmetric herringbone system as illustrated in figure 8a. In the first case, we show a localized
mode that is supported by a simple grating pair waveguide, but which is enhanced, in terms of
both amplitude and reduced leakage, by adding the extra gratings to produce the herringbone
system. In the second case, the original pair of gratings (I) and (III) reflect a specific range of plane
waves, but, by forming the tuned herringbone system, highly localized waveguide modes are
observable. In this way, we illustrate how a simple tuning parameter can be used to convert a
reflective mode to a highly localized guided waveform.

We consider a symmetric herringbone defined by the parameter choices s = (0.2, 0.1), b = √
2.

The separation b = √
2 was inspired by Jones et al. [24], where the motivation was linked to the

presence of Dirac-like points on the dispersion surfaces of doubly periodic systems, as explained
in [20]. The Bloch modes of the corresponding infinite herringbone system are obtained by solving
the eigenvalue problem for a system of four appropriately positioned pinned gratings. The
solutions are illustrated in figure 9a, where the appearance of localized minima of the logarithm
of the determinant of the system’s governing matrix indicates the presence of Bloch modes. We
plot this function versus the spectral parameter β in figure 9a for kx = 1.1.

The solid curve indicates the resonant β values for the herringbone structure, the upper dashed
(with reference to the top left corner of figure 9a) curve for the inner pair (gratings I and III)
separated by b = √

2 and the lower dashed curve for the shifted pair (either I, II or III, IV). For
the infinite system, pairs (I), (II) and (III), (IV) are characterized by the same Bloch modes. The
outer pair’s modes are shown by the dotted curve (gratings II and IV). We observe that both
the herringbone and the inner pair possess two clear modes, whereas the shifted pair possess no
modes for this range of frequencies. The first mode occurs for β � 2.84 and a line has been added
to the figure to indicate the coincident frequency for both the inner pair and the herringbone.

The second vertical line at β � 4.38 highlights the location of the second mode for the inner
pair, but the herringbone’s second mode arises for a different value, β � 4.55. The implication
is that, for the higher frequency, the addition of the extra gratings to create the herringbone
system induces a resonant mode that would not be apparent for the inner pair at the same
frequency. On the contrary, the first mode is seen regardless of the addition of the extra gratings.
This analysis is also valid for the semi-infinite herringbone systems, as illustrated in figure 9b–
d, where we consider the case of β = 2.82 and hence ψ = 1.17 from (3.18) for kx = 1.1. Note that
the determinant vanishes at the slightly higher value β � 2.84 in figure 9a. The infinite system
is used to indicate the neighbourhood of values of β corresponding to waveguide modes in the
semi-infinite structure, and for illustrative purposes we use the truncation parameter L = 100.

We show the strong reflection for the pair of shifted gratings defined by s = (0.2, 0.1) in
figure 9b. The shifted pair (I), (II) exhibits no resonance, which is consistent with the dashed
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curve in figure 9a. However, the inner pair of semi-infinite gratings supports a waveguiding
effect consistent with the mode displayed in figure 9a. The total displacement field is plotted
in figure 9c. A regular one-dimensional periodic pattern, with seven clear peaks and wavelength
λw = 2π/kx � 5.71, is observed, shown here for the first 40 pins.

The localized waveguide mode, wherein the incident plane wave (clearly indicated by the
arrow in all diagrams) undergoes significant bending to be channelled between the pinned
gratings, is observed for the herringbone structure in figure 9d. The mode is virtually identical for
both cases (c) and (d), with the same seven regular peaks and same wavelength λw = 2π/kx � 5.71.
However, the addition of the outer gratings reduces the scattering and amplifies the waveguiding
localization, as shown in figure 9d, thereby enhancing the waveguiding effect. We define an
enhancement factor Fe as the ratio of peak amplitudes in the central channels of a four-grating
herringbone waveguide to that of a two-grating unshifted to that for the same parameter settings,

Fe = |u(I)−(IV)
max |

|u(I),(III)
max |

. (3.19)

A value of Fe = 1.00 would indicate that the herringbone system replicates precisely the mode

supported by the two-grating waveguide. In the case of figure 9c,d, the enhancement factor is
Fe = 1.09.

By contrast, there is no correspondence for the β values of both systems for the second mode
in figure 9a. The extra shifted gratings alter the frequency of the second Bloch mode that can be
excited by appropriately chosen values of β and ψ in the semi-infinite problem. A larger value of
s1 increases the difference in β values for modes trapped by the inner pair and the herringbone
structure.

To better illustrate the concept of a pair of gratings that reflect waves at a given frequency being
enhanced by an additional pair to support a waveguide transmission, we consider the case of
s = (0.3, 0.1) (increasing s1 from the value illustrated in figure 9). The logarithm of the determinant
of the governing matrix for this system is plotted versus β in figure 10a. This herringbone system’s
second mode occurs for β = 4.66, compared with that of β = 4.38 for the inner pair (both marked
by vertical lines in figure 10a). Thus, the addition of the outer gratings to the inner pair converts
a reflection into a waveguide mode.

We show the total displacement field for the inner pair (gratings I and III) for a plane
wave incident at ψ = 1.3325 and β = 4.66 in figure 10b. This choice of ψ is determined using
equation (3.18) for β = 4.66 and kx = 1.1. Reflection dominates but there is some localization
within the grating pair, as can be predicted from the upper dashed curve in figure 10a. However,
by adding the extra gratings defined by s = (0.3, 0.1) above, and s− below, and exciting the system
with the same incident wave, we now observe a highly localized waveguide mode within the
herringbone structure (gratings I–IV) in figure 10c, with Fe = 3.54.

The moduli of the scattering coefficients for all four gratings are plotted in figure 10d, with
the first 40 shown. The amplitudes for the inner pair coefficients A(I)

n and A(III)
n are very similar,

which is also true for the first example with β = 2.82. The important factor here is that they are
also of similar order to the outer pair coefficients A(II)

n and A(IV)
n , which emphasizes that all four

gratings are required to support the localized mode, whereas only two gratings were sufficient
for the previous case. In this case, the herringbone structure supports a unique waveguide mode,
attainable only with the shifted grating structure.

(ii) Herringbone systems: dipole terms

The examples of waveguiding demonstrated in figures 9 and 10 arise for, respectively, |s| = 0.22
and |s| = 0.32, choices of s that are not well approximated using the array of sources and dipoles
method outlined in §§2c and 3b. In this section, we consider an example for |s| = 0.032, where the
dipole approximations are found to be valid and the dipole terms dominate the source terms.
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Figure 10. Symmetric herringbone system with s= (0.3, 0.1), b= √
2. (a) Identification of Bloch modes for the infinite

herringbone system for kx = 1.1. Solid curve shows eigenmodes for β � 2.80, 4.66, 5.53. The upper dashed (referencing the
top left corner) curve shows inner pair (gratings I and III)modes, and the lower dashed curve represents the shifted pair (gratings
I and II). (b,c) Total displacement field plots for an incident plane wave withψ = 1.3325 and β = 4.66 for L= 100 (first 30
shown). (b) Inner pair (gratings I and III) with b= √

2. (c) Symmetric herringbone (gratings I–IV) defined by b and s, s−.
(d) Moduli of the scattering coefficients for the herringbone (first 40 shown). (Online version in colour.)

In figure 11a, we plot the total displacement field for the herringbone system comprising four
rows of pins, with central spacing b = 1.3 and shift vectors s = (0.01, 0.03), t = (0.01, −0.03), using
the truncation parameter L = 160 (pins 40–80 shown). The incident plane wave is defined by
ψ = 0.805 for kx = 2.3 and β = 3.318 from (3.18). Here the scattering coefficients A(I)

n to A(IV)
n are

determined using the wave scattering method. The bending and waveguiding localization are
quite striking, with amplitudes reaching more than eight times those of the incident plane wave.
The field shows transmission above the grating system in figure 11a, with only very minimal
scattering effects evident around the lower pair of gratings, thereby demonstrating the focusing
and waveguiding capabilities of a tuned herringbone system.

The relatively small value of |s| = 0.032 ensures that the source–dipole approach approximates
the system well, as illustrated in figure 11b–f. The displacement field plotted using the source and
dipole coefficients S+

n , D+
n for s, and those for s− of S−

n , D−
n calculated using the system (3.7)–

(3.9) described in §3b,c, is shown in figure 11b for truncation parameter L = 160. A very similar
localization effect is observed within the system, with the envelope function and location of peaks
consistent with figure 11a.

Figure 11c provides further evidence for investigating the source–dipole approximation
approach. The maxima and minima of the flexural displacements are plotted for the fields
depicted in parts (a) and (b), with those of the full herringbone system shown using the solid
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Figure 11. Herringbone systemwith s= (0.01, 0.03), b= 1.3,a1 = a2 = 1. Total displacementfield plots for an incident plane
wave withψ = 0.805 and β = 3.318 for L= 160 (pins 40–80 shown) for (a) a herringbone system comprising four rows of
pins. (b) Two line arrays of sources and dipoleswith coefficients Sn andDn. (c) Maxima andminima of the flexural displacements
for the herringbone (solid) and two arrays of sources/dipoles (dashed) for the fields in parts (a) and (b). (d) Comparison of
coefficients for the upper pair (gratings I and II) of the herringbone system defined by s. (e,f ) Comparison of end effects for (e)
the herringbone and (f ) two line arrays. (Online version in colour.)

curve, and those of the dipole approximation shown using the dashed curve. The excellent
correspondence is clearly evident, with both the magnitudes and the distribution of the coefficient
terms matching well.

The upper pair coefficients, shown in figure 11d, where the values for the pair A(I)
n , A(II)

n (solid
curve) are compared with the dipole coefficients D+

n (dashed curve) for gratings (I) and (II),
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Figure 12. Total displacement fields forψ = 0,β = 3.33, b= 1.3 for (a) a pair of unshifted gratings (gratings I and III), (b) the
herringbone system with s= t= (0.005, 0), θ = 0, L= 100. Real parts of the coefficients are illustrated in (c), with dipole
(Dn, dashed) and source (Sn, solid). (d)Moduli of scattering coefficients comparing thedipole coefficients for the full herringbone
and its approximation. (Online version in colour.)

display excellent correspondence. In particular, there is a very good match in the vicinity of the
operating frequency β = 3.318, where the dashed curve crosses the solid |A(II)

n | curve.
However, there are some small but discernible differences. As well as the increased reflection

visible for −5 ≤ y ≤ 0, 40 ≤ x ≤ 80 in figure 11b compared with figure 11a, some of the details of
the end effects in the vicinity of the system’s entrance are lost with the dipole approximation,
as shown in figure 11e,f. The full herringbone system (figure 11e) has slightly lower amplitudes,
and there appears to be a small phase difference when comparing figure 11f with figure 11e. The
small discrepancies are likely to have arisen from the size of |s| and this is a resonant example. A
non-resonant example for a smaller magnitude of s, but the same angle of incidence ψ and system
parameters θ , b, is included in the electronic supplementary material, appendix E. In that case, the
changes in both the phase and the scattering pattern are significantly reduced.

(iii) Dependence on dipole angle

In §2d, and figure 6 in particular, we looked at how scattering patterns depend on the dipole
angle. As figure 6 illustrates for normal incidence, the increase of θ from being aligned with
the incident plane wave to becoming perpendicular reduces the scattering coefficients to zero.
In the herringbone system, formed of two arrays of sources and dipoles, the role of the dipole
angle θ is greatly enhanced. For the same settings (β = 3.33 and ψ = 0), we construct a symmetric
herringbone system with spacing b = 1.3 and initial shift vectors s = s− = (0.005, 0). We impose
the length |s| = 0.005 to remain constant and vary the angle θ in the range 0 ≤ θ ≤ π . In this way,
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Figure 13. Symmetric herringbone system with |s| = 0.005, b= 1.3, t= s− for normal incidence ψ = 0 and
β = 3.33, L= 100. (a) Two configurations with θ = π/4 and θ = 3π/4. (b) Comparison of dipole coefficients |Dn|
for θ = 0,π/4, 3π/4. (c,d) Total displacement fields for the herringbone systems with, respectively, θ = π/4 and
θ = 3π/4. (Online version in colour.)

the dipole angle for the lower half of the herringbone, denoted by φ in figure 7, varies in the range
0 ≥ φ ≥ −π .

For the spacing b = 1.3, frequencies in the neighbourhood of β = 3.33 can be tuned to support
waveguiding effects, as demonstrated by equation (3.17) and in figure 11. An example of blockage
for a pair of gratings is obtained for β = 3.33 and ψ = 0 in figure 12a, where we observe a
mode with significantly reduced resolution. The choice of normal incidence is a perfect regime
to investigate the design possibilities of varying the dipole angle θ , because each array of
sources/dipoles is subject to ‘head on’ incidence.

We consider the most basic addition of dipoles first, setting s2 to be zero and |s| = 0.005,
aligning θ with the angle of incidence ψ = 0. The effect is quite remarkable, with the herringbone
system supporting waveguiding and localization in the channel, as shown in figure 12b for
L = 100, with the first 30 pins shown. The waveguiding localization is not as impressive as for the
tuned design of ψ = 0.805 and s = (0.01, 0.03) in figure 11a, but the ability to convert a blockage to
a leaky waveguide by replacing sources with dipoles is an effect deserving of attention.

In figure 12c, the real parts of the source and dipole coefficients are plotted for the first 50
points for the waveguide mode depicted in figure 12b. The dominance of the dipole coefficients
is clear, and the envelope function of the coefficients is consistent with the displacement field
in figure 12b. The accuracy of the dipole approximations is also illustrated in figure 12d, where
the moduli |A(II)

n | and |Dn| are compared. Note once again the relative magnitudes for the source
strengths (dotted-dashed curve).
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We now consider varying the dipole orientation θ . Figure 13a shows, schematically, two
symmetric waveguides defined by θ = π/4, 3π/4. We adopt a consistent classification for the entire
figure with the solid lines representing s = (0.0035, 0.0035) (a convex entrance) and the dashed
case being s = (−0.0035, 0.0035) (the concave entrance). The convexity of the herringbone entrance
concomitantly affects the localization, one of the unique features of the model.

The moduli of the dipole coefficients |Dn| are plotted in figure 13b, with the first 70 points
shown (L = 100). We include those for θ = 0, discussed in figure 12 and plotted here with a
dot-dashed curve, and show that varying θ has clear effects on the scattering properties. The
greater modulation of the amplitudes for θ = 0 manifests in a clearly defined waveguide mode in
figure 12b. The π/2 shift in θ from π/4 to 3π/4 has an impact on the coefficients in figure 13b,
and on the localization in the vicinity of the herringbone entrance. The convex case favours
strong localization, as illustrated in figure 13c, where the displacement field for θ = π/4 is plotted,
compared with that for θ = 3π/4 in figure 13d.

Although the flexural wave fields are similar, there are visual differences in the localization
patterns observed within the gratings, with the peaks at the front of the system for θ = π/4
significantly higher than those for θ = 3π/4. This effect is related to the convexity/concavity of the
entrance to the herringbone system. For acute values of θ , the symmetric herringbone supports
greater localization in the neighbourhood of the opening compared with the case of π/2< θ <π .
It is also clear that the choice of a value of θ greater than 0 leads to a reduction in the extent of
waveguiding through the channel.

4. Concluding remarks
In this article, we have presented a new type of flexural waveguide designed in the form of
a herringbone system. We have demonstrated that the herringbone system can significantly
enhance the localization effects, in terms of amplitudes and focusing, compared with a simpler
two-grating waveguide. We have also shown how the herringbone structure is capable of
converting a grating pair’s reflection mode into a waveguide mode for the same incident plane
wave.

This paper has introduced a novel type of approximation for waveguide modes in structured
semi-infinite grating stacks. It is based on the dipole approximation, which takes into account the
relative positions and interactions within a structured waveguide such as the herringbone system.
This elegant asymptotic approximation is complemented by the derivation of the functional
equation of Wiener–Hopf type and analysis of its kernel function.

Several mathematical techniques were implemented, including a classical wave scattering
method to derive a system of linear algebraic equations for the flexural displacement. The solution
of this system was obtained in the form of scattering coefficients used to plot displacement fields
that demonstrate waveguiding effects. A discrete Wiener–Hopf formulation yielded expressions
for kernel matrices consisting of quasi-periodic Green’s functions. The zeros of the determinant
of such a kernel matrix correspond to Bloch modes for infinite grating systems, the knowledge of
which was used to aid the solution of the corresponding semi-infinite scattering problems.

For the case when the shifted pairs consist of two closely spaced gratings, we implemented an
alternative mathematical approach. The proximity of pairs of pins advocates the use of a dipole
approximation. The validity of the approach for small |s| was illustrated with several examples.
We showed that both the magnitude and the orientation of the dipoles are important for tuning
the localization effects.

We have supplemented the concepts and theoretical analysis with illustrative examples to
stimulate further investigations into herringbone waveguides. The model is very rich and we
envisage future analysis to quantify the peak amplitudes, enhancement factors, leakage and
decay rates, with the possibility of experimental validation. To this end, we anticipate that similar
localizing effects will be observed as the radius of the pins becomes finite. For examples of
similar extensions to inclusions of finite radii, but for infinite, rather than semi-infinite, platonic
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gratings, one may consult [37,38]. The infinite herringbone analogue would also be an interesting
instrument to analyse transmission resonances, along the lines of the work of [19,39].
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