142,783 research outputs found

    Active Gel Model of Amoeboid Cell Motility

    Full text link
    We develop a model of amoeboid cell motility based on active gel theory. Modeling the motile apparatus of a eukaryotic cell as a confined layer of finite length of poroelastic active gel permeated by a solvent, we first show that, due to active stress and gel turnover, an initially static and homogeneous layer can undergo a contractile-type instability to a polarized moving state in which the rear is enriched in gel polymer. This agrees qualitatively with motile cells containing an actomyosin-rich uropod at their rear. We find that the gel layer settles into a steadily moving, inhomogeneous state at long times, sustained by a balance between contractility and filament turnover. In addition, our model predicts an optimal value of the gel-susbstrate adhesion leading to maximum layer speed, in agreement with cell motility assays. The model may be relevant to motility of cells translocating in complex, confining environments that can be mimicked experimentally by cell migration through microchannels.Comment: To appear in New Journal of Physic

    Chandra Observation of M84, Radio Lobe Elliptical in Virgo cluster

    Full text link
    We analyzed a deep Chandra observation of M84, a bright elliptical galaxy in the core of the Virgo cluster. We find that the spatial distribution of the soft X-ray emission is defined by the radio structure of the galaxy. In particular we find two low density regions associated with the radio lobes and surrounded by higher density X-ray filaments. In addition to a central AGN and a population of galactic sources, we find a diffuse hard source filling the central 10 kpc region. Since the morphology of the hard source appears round and is different from that seen in the radio or in soft X-rays, we propose that it is hot gas heated by the central AGN. Finally, we find that the central elemental abundance in the X-ray gas is comparable to that measured optically.Comment: accepted to ApJ Letters, Oct 2000. 5 pages in emulateap

    Portable tool cleans pipes and tubing

    Get PDF
    Portable tool cleans and polishes the external surfaces of tubes and pipes without contaminating the interior areas with loose particles. The tool is driven by an electric drill and is connected to a vacuum source that removes debris resulting from the cleaning and polishing action

    Emulation of multivariate simulators using thin-plate splines with application to atmospheric dispersion

    No full text
    It is often desirable to build a statistical emulator of a complex computer simulator in order to perform analysis which would otherwise be computationally infeasible. We propose methodology to model multivariate output from a computer simulator taking into account output structure in the responses. The utility of this approach is demonstrated by applying it to a chemical and biological hazard prediction model. Predicting the hazard area which results from an accidental or deliberate chemical or biological release is imperative in civil and military planning and also in emergency response. The hazard area resulting from such a release is highly structured in space and we therefore propose the use of a thin-plate spline to capture the spatial structure and fit a Gaussian process emulator to the coefficients of the resultant basis functions. We compare and contrast four different techniques for emulating multivariate output: dimension-reduction using (i) a fully Bayesian approach with a principal component basis, (ii) a fully Bayesian approach with a thin-plate spline basis, assuming that the basis coefficients are independent, and (iii) a “plug-in” Bayesian approach with a thin-plate spline basis and a separable covariance structure; and (iv) a functional data modeling approach using a tensor-product (separable) Gaussian process. We develop methodology for the two thin-plate spline emulators and demonstrate that these emulators significantly outperform the principal component emulator. Further, the separable thin-plate spline emulator, which accounts for the dependence between basis coefficients, provides substantially more realistic quantification of uncertainty, and is also computationally more tractable, allowing fast emulation. For high resolution output data, it also offers substantial predictive and computational ad- vantages over the tensor-product Gaussian process emulator

    Benchmark ultra-cool dwarfs in widely separated binary systems

    Full text link
    Ultra-cool dwarfs as wide companions to subgiants, giants, white dwarfs and main sequence stars can be very good benchmark objects, for which we can infer physical properties with minimal reference to theoretical models, through association with the primary stars. We have searched for benchmark ultra-cool dwarfs in widely separated binary systems using SDSS, UKIDSS, and 2MASS. We then estimate spectral types using SDSS spectroscopy and multi-band colors, place constraints on distance, and perform proper motions calculations for all candidates which have sufficient epoch baseline coverage. Analysis of the proper motion and distance constraints show that eight of our ultra-cool dwarfs are members of widely separated binary systems. Another L3.5 dwarf, SDSS 0832, is shown to be a companion to the bright K3 giant Eta Cancri. Such primaries can provide age and metallicity constraints for any companion objects, yielding excellent benchmark objects. This is the first wide ultra-cool dwarf + giant binary system identified.Comment: 4 pages, 3 figures, conference, "New Technologies for Probing the Diversity of Brown Dwarfs and Exoplanets", oral tal

    Identifying Ultra-Cool Dwarfs at Low Galactic Latitudes: A Southern Candidate Catalogue

    Get PDF
    We present an Ultra-Cool Dwarf (UCD) catalogue compiled from low southern Galactic latitudes and mid-plane, from a cross-correlation of the 2MASS and SuperCOSMOS surveys. The catalogue contains 246 members identified from 5042 sq. deg. within 220 deg. <= l <= 360 deg. and 0 deg. < l <= 30 deg., for |b| <= 15 deg. Sixteen candidates are spectroscopically confirmed in the near-IR as UCDs with spectral types from M7.5V to L9. Our catalogue selection method is presented enabling UCDs from ~M8V to the L-T transition to be selected down to a 2MASS limiting magnitude of Ks ~= 14.5 mag. This method does not require candidates to have optical detections for catalogue inclusion. An optimal set of optical/near-IR and reduced proper-motion selection criteria have been defined that includes: an Rf and Ivn photometric surface gravity test, a dual Rf-band variability check, and an additional photometric classification scheme to selectively limit contaminants. We identify four candidates as possible companions to nearby Hipparcos stars -- observations are needed to identify these as potential benchmark UCD companions. We also identify twelve UCDs within a possible distance 20 pc, three are previously unknown of which two are estimated within 10 pc, complimenting the nearby volume-limited census of UCDs. An analysis of the catalogue spatial completeness provides estimates for distance completeness over three UCD MJ ranges, while Monte-Carlo simulations provide an estimate of catalogue areal completeness at the 75 per cent level. We estimate a UCD space density of Rho (total) = (6.41+-3.01)x10^3/pc^3 over the range of 10.5 <= MJ ~< 14.9, similar to values measured at higher Galactic latitudes (|b| ~> 10 deg.) in the field population and obtained from more robust spectroscopically confirmed UCD samples.Comment: MNRAS accepted April 2012. Contains 30 figures and 11 tables. Tables 2 and 6 to be published in full and on-line only. The on-line tables can also be obtained by contacting the author

    Hot Gas Structure in the Elliptical Galaxy NGC 4472

    Full text link
    We present X-ray spectroscopic and morphological analyses using Chandra ACIS and ROSAT observations of the giant elliptical galaxy NGC 4472 in the Virgo cluster. We discuss previously unobserved X-ray structures within the extended galactic corona. In the inner 2' of the galaxy, we find X-ray holes or cavities with radii of ~2 kpc, corresponding to the position of radio lobes. These holes were produced during a period of nuclear activity that began 1.2 x 10^7 years ago and may be ongoing. We also find an asymmetrical edge in the galaxy X-ray emission 3' (14 kpc) northeast of the core and an ~8' tail (36 kpc) extending southwest of the galaxy. These two features probably result from the interaction of NGC 4472 gas with the Virgo gas, which produces compression in the direction of NGC 4472's infall and an extended tail from ram pressure stripping. Assuming the tail is in pressure equilibrium with the surrounding gas, we compute its angle to our line of sight and estimate that its true extent exceeds 100 kpc. Finally, in addition to emission from the nucleus (first detected by Soldatenkov, Vikhlinin & Pavlinsky), we detect two small extended sources within 10'' of the nucleus of the galaxy, both of which have luminosities of ~7 x 10^38 erg/s.Comment: 25 pages, 11 figures, accepted by Ap
    • …
    corecore