2,795 research outputs found
Pruning and prioritising: a case study of a pragmatic method for managing a rapid systematic review with limited resources
Full systematic reviews are time and resource heavy. We describe a method successfully used to
produce a rapid review of yoga for health and wellbeing, with limited resources, using mapping
methods. Inclusion and exclusion criteria were developed a priori and refined post hoc, with the
review team blind to the study results to minimise the introduction of bias. This method allowed
the review to be tailored to make use of the best available evidence and the health topics of
most relevance to the commissioners, and to enable the evidence base to be disseminated to
practitioners in a timely fashion
Linking working memory and long-term memory: A computational model of the learning of new words
The nonword repetition (NWR) test has been shown to be a good predictor of children’s vocabulary size. NWR performance has been explained using phonological working memory, which is seen as a critical component in the learning of new words. However, no detailed specification of the link between phonological working memory and long-term memory (LTM) has been proposed. In this paper, we present a computational model of children’s vocabulary acquisition (EPAM-VOC) that specifies how phonological working memory and LTM interact. The model learns phoneme sequences, which are stored in LTM and mediate how much information can be held in working memory. The model’s behaviour is compared with that of children in a new study of NWR, conducted in order to ensure the same nonword stimuli and methodology across ages. EPAM-VOC shows a pattern of results similar to that of children: performance is better for shorter nonwords and for wordlike nonwords, and performance improves with age. EPAM-VOC also simulates the superior performance for single consonant nonwords over clustered consonant nonwords found in previous NWR studies. EPAM-VOC provides a simple and elegant computational account of some of the key processes involved in the learning of new words: it specifies how phonological working memory and LTM interact; makes testable predictions; and suggests that developmental changes in NWR performance may reflect differences in the amount of information that has been encoded in LTM rather than developmental changes in working memory capacity.
Keywords: EPAM, working memory, long-term memory, nonword repetition, vocabulary acquisition, developmental change
Recommended from our members
Ontology Based Query Expansion with a Probabilistic Retrieval Model
This paper examines the use of ontologies for defining query context. The information retrieval system used is based on the probabilistic retrieval model. We extend the use of relevance feedback (RFB) and pseudo-relevance feedback (PF) query expansion techniques using information from a news domain ontology. The aim is to assess the impact of the ontology on the query expansion results with respect to recall and precision. We also tested the results for varying the relevance feedback parameters (number of terms or number of documents). The factors which influence the success of ontology based query expansion are outlined. Our findings show that ontology based query expansion has had mixed success. The use of the ontology has vastly increased the number of relevant documents retrieved, however, we conclude that for both types of query expansion, the PF results are better than the RFB results
Papillomaviruses in equids: a decade of discovery and more to come?
No abstract available
Grid simulation services for the medical community
The first part of this paper presents a selection of medical simulation applications, including image reconstruction, near real-time registration for neuro-surgery, enhanced dose distribution calculation for radio-therapy, inhaled drug delivery prediction, plastic surgery planning and cardio-vascular system simulation. The latter two topics are discussed in some detail. In the second part, we show how such services can be made available to the clinical practitioner using Grid technology. We discuss the developments and experience made during the EU project GEMSS, which provides reliable, efficient, secure and lawful medical Grid services
Deep Hole States in the Mirror Nuclei 23-Mg and 23-Na
This work was supported by National Science Foundation Grant PHY 76-84033 and Indiana Universit
A novel superfamily containing the β-grasp fold involved in binding diverse soluble ligands
BACKGROUND: Domains containing the β-grasp fold are utilized in a great diversity of physiological functions but their role, if any, in soluble or small molecule ligand recognition is poorly studied. RESULTS: Using sensitive sequence and structure similarity searches we identify a novel superfamily containing the β-grasp fold. They are found in a diverse set of proteins that include the animal vitamin B12 uptake proteins transcobalamin and intrinsic factor, the bacterial polysaccharide export proteins, the competence DNA receptor ComEA, the cob(I)alamin generating enzyme PduS and the Nqo1 subunit of the respiratory electron transport chain. We present evidence that members of this superfamily are likely to bind a range of soluble ligands, including B12. There are two major clades within this superfamily, namely the transcobalamin-like clade and the Nqo1-like clade. The former clade is typified by an insert of a β-hairpin after the helix of the β-grasp fold, whereas the latter clade is characterized by an insert between strands 4 and 5 of the core fold. CONCLUSION: Members of both clades within this superfamily are predicted to interact with ligands in a similar spatial location, with their specific inserts playing a role in the process. Both clades are widely represented in bacteria suggesting that this superfamily was derived early in bacterial evolution. The animal lineage appears to have acquired the transcobalamin-like proteins from low GC Gram-positive bacteria, and this might be correlated with the emergence of the ability to utilize B12 produced by gut bacteria. REVIEWERS: This article was reviewed by Andrei Osterman, Igor Zhulin, and Arcady Mushegian
Multisensory cue combination after sensory loss: audio-visual localization in patients with progressive retinal disease
Human adults can combine perceptual estimates from different senses to minimize uncertainty, by taking a reliability-weighted average (the maximum likelihood estimate, MLE). Although research has shown that healthy human adults reweight estimates as their reliability changes from one trial to the next, less is known about how humans adapt to gradual long-term changes in sensory reliability. This study assessed whether individuals diagnosed with progressive visual deterioration, due to retinal disease, combined auditory and visual cues to location according to optimal (MLE) predictions. Twelve patients with central visual loss, 10 patients with peripheral visual loss, and 12 normally sighted adults were asked to localize visual and/or auditory targets in central (1°–18°) and peripheral (36°–53°) locations. Normally sighted adults and patients with peripheral visual loss showed multisensory uncertainty reduction and cue weighting in line with MLE predictions. In contrast, patients with central visual loss did not weight estimates appropriately in either the center or the periphery, and failed to meet MLE predictions in the periphery. Our results show that one visual loss patient group succeeded at optimal cue combination, whereas the other patient group (patients with central vision loss) did not. We propose that sensory remapping due to changes in fixation behavior may contribute to apparent failures in the latter group
- …