11 research outputs found

    The development of a novel strategy for the control of encrustation and blockage of Foley catheters.

    Get PDF
    Mutants of Pr. mirabilis resistant to triclosan were generated in the laboratory, they had not gained resistance to antibiotics, but they were able to form crystalline biofilms in the bladder model on catheters exposed to triclosan.  Clinical trials of this strategy should therefore monitor the urinary flora for signs of triclosan resistance. If this strategy can be transferred successfully from the laboratory to the clinic, it could produce a major improvement in the care of the many elderly and disabled patients enduring long-term bladder catheterisation

    A multicentre evaluation and expert recommendations of use of the newly developed BioFire Joint Infection polymerase chain reaction panel

    Get PDF
    Septic arthritis is a serious condition with significant morbidity and mortality, routinely diagnosed using culture. The FDA has recently approved the rapid molecular BioFire® Joint Infection Panel (BJIP) for synovial fluid. We aimed to evaluate the BJIP compared to culture and its potential use in patient management. A multicentre retrospective evaluation of BJIP was conducted in the UK and Ireland. Positive percent agreement (PPA) and negative percent agreement (NPA) were calculated between the BJIP and routine culture. A multidisciplinary team (MDT) discussion addressing the optimal or potential case use of the assay practice was facilitated. Three hundred ninety-nine surplus synovial fluid samples (~ 70% from native joints) from eight centres were processed using BJIP in addition to routine culture. An increased yield of positive results was detected using BJIP compared to routine culture (98 vs 83), giving an overall PPA of 91.6% and overall NPA of 93% for the BJIP compared to culture results. The BJIP detected resistant markers and additional organisms that could influence antibiotic choices including Neisseria gonorrhoeae and Kingella kingae. The MDT agreed that the assay could be used, in addition to standard methods, in adult and children patients with specialist advice use based on local needs. Rapid results from BJIP were assessed as having potential clinical impact on patient management. Organisms not included in the panel may be clinically significant and may limit the value of this test for PJI

    A multicentre evaluation and expert recommendations of use of the newly developed BioFire Joint Infection polymerase chain reaction panel

    Get PDF
    Septic arthritis is a serious condition with significant morbidity and mortality, routinely diagnosed using culture. The FDA has recently approved the rapid molecular BioFire® Joint Infection Panel (BJIP) for synovial fluid. We aimed to evaluate the BJIP compared to culture and its potential use in patient management. A multicentre retrospective evaluation of BJIP was conducted in the UK and Ireland. Positive percent agreement (PPA) and negative percent agreement (NPA) were calculated between the BJIP and routine culture. A multidisciplinary team (MDT) discussion addressing the optimal or potential case use of the assay practice was facilitated. Three hundred ninety-nine surplus synovial fluid samples (~ 70% from native joints) from eight centres were processed using BJIP in addition to routine culture. An increased yield of positive results was detected using BJIP compared to routine culture (98 vs 83), giving an overall PPA of 91.6% and overall NPA of 93% for the BJIP compared to culture results. The BJIP detected resistant markers and additional organisms that could influence antibiotic choices including Neisseria gonorrhoeae and Kingella kingae. The MDT agreed that the assay could be used, in addition to standard methods, in adult and children patients with specialist advice use based on local needs. Rapid results from BJIP were assessed as having potential clinical impact on patient management. Organisms not included in the panel may be clinically significant and may limit the value of this test for PJI

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Potential value of a rapid syndromic multiplex PCR for the diagnosis of native and prosthetic joint infections: a real-world evidence study

    Get PDF
    Introduction: The BIOFIRE Joint Infection (JI) Panel is a diagnostic tool that uses multiplex-PCR testing to detect microorganisms in synovial fluid specimens from patients suspected of having septic arthritis (SA) on native joints or prosthetic joint infections (PJIs). Methods: A study was conducted across 34 clinical sites in 19 European and Middle Eastern countries from March 2021 to June 2022 to assess the effectiveness of the BIOFIRE JI Panel. Results: A total of 1527 samples were collected from patients suspected of SA or PJI, with an overall agreement of 88.4 % and 85 % respectively between the JI Panel and synovial fluid cultures (SFCs). The JI Panel detected more positive samples and microorganisms than SFC, with a notable difference on Staphylococcus aureus, Streptococcus species, Enterococcus faecalis, Kingella kingae, Neisseria gonorrhoeae, and anaerobic bacteria. The study found that the BIOFIRE JI Panel has a high utility in the real-world clinical setting for suspected SA and PJI, providing diagnostic results in approximately 1 h. The user experience was positive, implying a potential benefit of rapidity of results' turnover in optimising patient management strategies. Conclusion: The study suggests that the BIOFIRE JI Panel could potentially optimise patient management and antimicrobial therapy, thus highlighting its importance in the clinical setting

    The development of a novel strategy for the control of encrustation and blockage of Foley catheters

    No full text
    Mutants of Pr. mirabilis resistant to triclosan were generated in the laboratory, they had not gained resistance to antibiotics, but they were able to form crystalline biofilms in the bladder model on catheters exposed to triclosan.  Clinical trials of this strategy should therefore monitor the urinary flora for signs of triclosan resistance. If this strategy can be transferred successfully from the laboratory to the clinic, it could produce a major improvement in the care of the many elderly and disabled patients enduring long-term bladder catheterisation.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Reduced Susceptibility of Proteus mirabilis to Triclosan▿

    No full text
    Clinical isolates of Proteus mirabilis causing catheter encrustation and blockage are susceptible to the biocide triclosan (MICs of 0.2 mg/liter). Studies with laboratory models of the bladder have demonstrated that the inflation of catheter retention balloons with triclosan solutions rather than water results in the diffusion of triclosan from the balloons into the surrounding urine and the inhibition of catheter encrustation by P. mirabilis. The aim of this study was to test whether the exposure of P. mirabilis to triclosan under laboratory conditions resulted in the selection of strains with reduced susceptibilities to this biocide. Exposure to triclosan in agar was shown to select mutants with MICs elevated from 0.2 mg/liter up to 80 mg/liter. In a selection of 14 of these strains, the decreased susceptibility was found to be stable and not associated with increased resistance to antibiotics. Experiments with the laboratory models demonstrated that inflation of the catheter balloons with triclosan (10 mg/ml) prevented encrustation and blockage by the parent strain P. mirabilis B2 (MIC, 0.2 mg/liter) and the mutant strain M48 (MIC, 2.0 mg/liter) but had no effect on crystalline biofilm formation by strain M55 (MIC, 40 mg/liter). These results suggest that, in any clinical trial or subsequent clinical use of the strategy, it will be important to monitor the urinary flora of the catheterized patients for P. mirabilis strains with reduced susceptibility to triclosan. The emergence of these strains could undermine the ability of the triclosan strategy to control catheter encrustation

    Effect of triclosan on the development of bacterial biofilms by urinary tract pathogens on urinary catheters

    No full text
    Objectives: To examine (i) the effect of triclosan on the formation of catheter biofilms by urinary tract pathogens and (ii) the diffusion of triclosan through the retention balloons of urinary catheters. Methods: Models of the catheterized bladder were infected with eight different urinary tract pathogens and the effect of triclosan on biofilm formation was assessed by determining the numbers of viable cells colonizing the catheters and by scanning electron microscopy. HPLC was used to determine the triclosan concentration in urine draining from models that had been fitted with triclosan-inflated silicone catheters. Results: When catheters were inflated with triclosan (10 g/L) the formation of catheter biofilm by Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus and Proteus mirabilis was prevented. The numbers of Enterococcus faecalis and Providencia stuartii cells colonizing catheters were also significantly reduced (P < 0.05). Serratia marcescens, Morganella morganii and Pseudomonas aeruginosa, however, were able to produce extensive catheter biofilms in the presence of triclosan. Only P. mirabilis produced alkaline urine and encrusted the catheters. Concentrations of 0.02–0.16 mg/L of the biocide were detected in urine draining from the model over the 48 h experimental period. Conclusions: Triclosan diffused through silicone catheter balloons and produced urinary concentrations that prevented catheter encrustation by P. mirabilis and biofilm formation by several other common pathogens of the catheterized urinary tract. It had little effect on urease-producing P. aeruginosa, S. marcescens or M. morganii but these species did not produce alkaline urine or crystalline biofilms

    A multicentre evaluation and expert recommendations of use of the newly developed BioFire Joint Infection polymerase chain reaction panel

    No full text
    Septic arthritis is a serious condition with significant morbidity and mortality, routinely diagnosed using culture. The FDA has recently approved the rapid molecular BioFire® Joint Infection Panel (BJIP) for synovial fluid. We aimed to evaluate the BJIP compared to culture and its potential use in patient management. A multicentre retrospective evaluation of BJIP was conducted in the UK and Ireland. Positive percent agreement (PPA) and negative percent agreement (NPA) were calculated between the BJIP and routine culture. A multidisciplinary team (MDT) discussion addressing the optimal or potential case use of the assay practice was facilitated. Three hundred ninety-nine surplus synovial fluid samples (~ 70% from native joints) from eight centres were processed using BJIP in addition to routine culture. An increased yield of positive results was detected using BJIP compared to routine culture (98 vs 83), giving an overall PPA of 91.6% and overall NPA of 93% for the BJIP compared to culture results. The BJIP detected resistant markers and additional organisms that could influence antibiotic choices including Neisseria gonorrhoeae and Kingella kingae. The MDT agreed that the assay could be used, in addition to standard methods, in adult and children patients with specialist advice use based on local needs. Rapid results from BJIP were assessed as having potential clinical impact on patient management. Organisms not included in the panel may be clinically significant and may limit the value of this test for PJI.</p
    corecore