688 research outputs found

    Role of sand as substrate and dietary component for juvenile sea cucumber Holothuria scabra

    Get PDF
    The sea cucumber Holothuria scabra, or sandfish, is a commercially valuable aquaculture species; however viable intensive tank-based aquaculture techniques have not yet been developed. This study aimed to assess the role of sand as a substrate and/or dietary component in the intensive tank culture of sandfish in recirculating aquaculture systems (RAS) in South Africa. A control experiment was conducted to confirm the reported positive effect of sand as a substrate on sandfish growth and a sand-in-diet experiment was conducted to determine if the incorporation of sand into formulated diets could improve sandfish growth in bare tanks. In the control experiment, the mean growth rate of juvenile sandfish in the bare tanks was significantly lower than that of the juveniles reared in tanks with a sand substrate (-0.12 +/- 0.16 g day(-1) SE and 0.03 +/- 0.01 g day(-1) respectively; F-(1,F-2)=1.91, p0.05). Results confirmed the reported positive effect on sandfish growth when sand is provided as a substrate, however sand in diets did not promote growth in the same way, indicating that the inclusion of sand in formulated diets is unlikely to compensate for the lack of sand as a substrate. Future research should therefore aim to identify the optimum parameters of sand substrate and develop tank holding systems capable of maintaining favourable substrate conditions for intensive sandfish culture

    The effect of resource quality on the growth of Holothuria scabra during aquaculture waste bioremediation

    Get PDF
    Reducing dependency on environmentally unsustainable formulated feeds, most of which include limited reserves of fishmeal as a protein source, is a priority for the aquaculture industry, particularly for intensive culture systems. One approach is to increase nitrogen reuse within the system by feeding nitrogen-rich aquaculture effluent to deposit feeders, thereby closing the aquaculture nitrogen-loop. This study, for the first time and on a laboratory-scale, has reared juveniles of the sea cucumber Holothuria scabra at high densities solely on particulate organic waste from a commercial-scale land-based abalone recirculating aquaculture system. Furthermore, growth rates and biomass yields were increased significantly by adjusting the effluent C:N from 5:1 to 20:1 by adding exogenous organic carbon sources (glucose, starch and cellulose), so fuelling accelerated heterotrophic bacterial production within the redox-stratified tank sediment. Sea cucumber juveniles reared solely on effluent had a biomass density of 711 g m−2 after four months whereas animals reared on starch-amended effluent (the best performing treatment) had a final density of 1011 g m−2. Further optimisation of this approach could increase biomass yields and pave the way for the commercial cultivation of deposit feeding animals on waste streams, thus contributing to more environmentally sustainable aquaculture. Here, the nitrogen that originated from fishmeal is not lost through the discharge of aquaculture effluent; rather, it is immobilised into single cell biomass that is up-cycled into high-value secondary biomass. We demonstrate that sea cucumbers can be produced at high density through the manipulation of the C:N ratio of aquaculture effluent

    Redox stratification drives enhanced growth in a deposit-feeding invertebrate: Implications for aquaculture bioremediation

    Get PDF
    Effective and affordable treatment of waste solids is a key sustainability challenge for the aquaculture industry. Here, we investigated the potential for a deposit-feeding sea cucumber, Holothuria scabra, to provide a remediation service whilst concurrently yielding a high-value secondary product in a land-based recirculating aquaculture system (RAS). The effect of sediment depth, particle size and redox regime were examined in relation to changes in the behaviour, growth and biochemical composition of juvenile sea cucumbers cultured for 81 d in manipulated sediment systems, describing either fully oxic or stratified (oxic-anoxic) redox regimes. The redox regime was the principal factor affecting growth, biochemical composition and behaviour, while substrate depth and particle size did not significantly affect growth rate or biomass production. Animals cultured under fully oxic conditions exhibited negative growth and had higher lipid and carbohydrate contents, potentially due to compensatory feeding in response to higher micro - phyto benthic production. In contrast, animals in the stratified treatments spent more time feeding, generated faster growth and produced significantly higher biomass yields (626.89 ± 35.44 g m-2 versus 449.22 ± 14.24 g m-2; mean ± SE). Further, unlike in oxic treatments, growth in the stratified treatments did not reach maximum biomass carrying capacity, indicating that stratified sediment is more suitable for culturing sea cucumbers. However, the stratified sediments may exhibit reduced bioremediation ability relative to the oxic sediment, signifying a trade-off between remediation efficiency and exploitable biomass yiel

    Carbon amendment stimulates benthic nitrogen cycling during the bioremediation of particulate aquaculture waste

    Get PDF
    The treatment of organic wastes remains one of the key sustainability challenges facing the growing global aquaculture industry. Bioremediation systems based on coupled bioturbation-microbial processing offer a promising route for waste management. We present, for the first time, a combined biogeochemical-molecular analysis of the short-term performance of one such system that is designed to receive nitrogen-rich particulate aquaculture wastes. Using sea cucumbers (Holothuria scabra) as a model bioturbator we provide evidence that adjusting the waste CgN from 5g1 to 20g1 promoted a shift in nitrogen cycling pathways towards the dissimilatory nitrate reduction to ammonium (DNRA), resulting in net NH4+ efflux from the sediment. The carbon amended treatment exhibited an overall net N2 uptake, whereas the control receiving only aquaculture waste exhibited net N2 production, suggesting that carbon supplementation enhanced nitrogen fixation. The higher NH4+ efflux and N2 uptake was further supported by meta-genome predictions that indicate that organic-carbon addition stimulated DNRA over denitrification. These findings indicate that carbon addition may potentially result in greater retention of nitrogen within the system; however, longer-term trials are necessary to determine whether this nitrogen retention is translated into improved sea cucumber biomass yields. Whether this truly constitutes a remediation process is open for debate as there remains the risk that any increased nitrogen retention may be temporary, with any subsequent release potentially raising the eutrophication risk. Longer and larger-scale trials are required before this approach may be validated with the complexities of the in-system nitrogen cycle being fully understood

    Magnetohydrodynamics of Cloud Collisions in a Multi-phase Interstellar Medium

    Get PDF
    We extend previous studies of the physics of interstellar cloud collisions by beginning investigation of the role of magnetic fields through 2D magnetohydrodynamic (MHD) numerical simulations. We study head-on collisions between equal mass, mildly supersonic diffuse clouds. We include a moderate magnetic field and two limiting field geometries, with the field lines parallel (aligned) and perpendicular (transverse) to the colliding cloud motion. We explore both adiabatic and radiative cases, as well as symmetric and asymmetric ones. We also compute collisions between clouds evolved through prior motion in the intercloud medium and compare with unevolved cases. We find that: In the (i) aligned case, adiabatic collisions, like their HD counterparts, are very disruptive, independent of the cloud symmetry. However, when radiative processes are taken into account, partial coalescence takes place even in the asymmetric case, unlike the HD calculations. In the (ii) transverse case, collisions between initially adjacent unevolved clouds are almost unaffected by magnetic fields. However, the interaction with the magnetized intercloud gas during the pre-collision evolution produces a region of very high magnetic energy in front of the cloud. In collisions between evolved clouds with transverse field geometry, this region acts like a ``bumper'', preventing direct contact between the clouds, and eventually reverses their motion. The ``elasticity'', defined as the ratio of the final to the initial kinetic energy of each cloud, is about 0.5-0.6 in the cases we considered. This behavior is found both in adiabatic and radiative cases.Comment: 40 pages in AAS LaTeX v4.0, 13 figures (in degraded jpeg format). Full resolution images as well as mpeg animations are available at http://www.msi.umn.edu:80/Projects/twj/mhd-cc/ . Accepted for publication in The Astrophysical Journa

    Patterns of Natural and Human-Caused Mortality Factors of a Rare Forest Carnivore, the Fisher (Pekania pennanti) in California.

    Get PDF
    Wildlife populations of conservation concern are limited in distribution, population size and persistence by various factors, including mortality. The fisher (Pekania pennanti), a North American mid-sized carnivore whose range in the western Pacific United States has retracted considerably in the past century, was proposed for threatened status protection in late 2014 under the United States Endangered Species Act by the United States Fish and Wildlife Service in its West Coast Distinct Population Segment. We investigated mortality in 167 fishers from two genetically and geographically distinct sub-populations in California within this West Coast Distinct Population Segment using a combination of gross necropsy, histology, toxicology and molecular methods. Overall, predation (70%), natural disease (16%), toxicant poisoning (10%) and, less commonly, vehicular strike (2%) and other anthropogenic causes (2%) were causes of mortality observed. We documented both an increase in mortality to (57% increase) and exposure (6%) from pesticides in fishers in just the past three years, highlighting further that toxicants from marijuana cultivation still pose a threat. Additionally, exposure to multiple rodenticides significantly increased the likelihood of mortality from rodenticide poisoning. Poisoning was significantly more common in male than female fishers and was 7 times more likely than disease to kill males. Based on necropsy findings, suspected causes of mortality based on field evidence alone tended to underestimate the frequency of disease-related mortalities. This study is the first comprehensive investigation of mortality causes of fishers and provides essential information to assist in the conservation of this species

    A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale

    Get PDF
    In this era of complete genomes, our knowledge of neuroanatomical circuitry remains surprisingly sparse. Such knowledge is however critical both for basic and clinical research into brain function. Here we advocate for a concerted effort to fill this gap, through systematic, experimental mapping of neural circuits at a mesoscopic scale of resolution suitable for comprehensive, brain-wide coverage, using injections of tracers or viral vectors. We detail the scientific and medical rationale and briefly review existing knowledge and experimental techniques. We define a set of desiderata, including brain-wide coverage; validated and extensible experimental techniques suitable for standardization and automation; centralized, open access data repository; compatibility with existing resources, and tractability with current informatics technology. We discuss a hypothetical but tractable plan for mouse, additional efforts for the macaque, and technique development for human. We estimate that the mouse connectivity project could be completed within five years with a comparatively modest budget.Comment: 41 page

    Principles for transformative ocean governance

    Get PDF
    With a focus on oceans, we collaborated across ecological, social and legal disciplines to respond to the United Nations call for transformation in the ‘2030 Agenda for Sustainable Development’. We developed a set of 13 principles that strategically and critically connect transformative ocean research to transformative ocean governance (complementing the UN Decade for Ocean Science). We used a rigorous, iterative and transparent consensus-building approach to define the principles, which can interact in supporting, neutral or sometimes conflicting ways. We recommend that the principles could be applied as a comprehensive set and discuss how to learn from their interactions, particularly those that reveal hidden tensions. The principles can bring and keep together partnerships for innovative ocean action. This action must respond to the many calls to reform current ocean-use practices which are based on economic growth models that have perpetuated inequities and fuelled conflict and environmental decline

    Resonant nonlinear magneto-optical effects in atoms

    Get PDF
    In this article, we review the history, current status, physical mechanisms, experimental methods, and applications of nonlinear magneto-optical effects in atomic vapors. We begin by describing the pioneering work of Macaluso and Corbino over a century ago on linear magneto-optical effects (in which the properties of the medium do not depend on the light power) in the vicinity of atomic resonances, and contrast these effects with various nonlinear magneto-optical phenomena that have been studied both theoretically and experimentally since the late 1960s. In recent years, the field of nonlinear magneto-optics has experienced a revival of interest that has led to a number of developments, including the observation of ultra-narrow (1-Hz) magneto-optical resonances, applications in sensitive magnetometry, nonlinear magneto-optical tomography, and the possibility of a search for parity- and time-reversal-invariance violation in atoms.Comment: 51 pages, 23 figures, to appear in Rev. Mod. Phys. in Oct. 2002, Figure added, typos corrected, text edited for clarit

    Geographically touring the eastern bloc: British geography, travel cultures and the Cold War

    Get PDF
    This paper considers the role of travel in the generation of geographical knowledge of the eastern bloc by British geographers. Based on oral history and surveys of published work, the paper examines the roles of three kinds of travel experience: individual private travels, tours via state tourist agencies, and tours by academic delegations. Examples are drawn from across the eastern bloc, including the USSR, Poland, Romania, East Germany and Albania. The relationship between travel and publication is addressed, notably within textbooks, and in the Geographical Magazine. The study argues for the extension of accounts of cultures of geographical travel, and seeks to supplement the existing historiography of Cold War geography
    corecore