3,684 research outputs found

    Ideas for a high-level proof strategy language

    Get PDF
    ABSTRACT Finding ways to prove theorems mechanically was one of the earliest challenges tackled by the AI community. Notable progress has been made but there is still always a limit to any set of heuristic search techniques. From a proof done by human users, we wish to find out whether AI techniques can also be used to learn from a human user. AI4FM (Artificial Intelligence for Formal Methods) is a four-year project that starts officially in April 2010 (see www.AI4FM.org). It focuses on helping users of "formal methods" many of which give rise to proof obligations that have to be (mechanically) verified (by a theorem prover). In industrial-sized developments, there are often a large number of proof obligations and, whilst many of them succumb to similar proof strategies, those that remain can hold up engineers trying to use formal methods. The goal of AI4FM is to learn enough from one manual proof, to discharge proof obligations automatically that yield to similar proof strategies. To achieve this, a high-level (proof) strategy language is required, and in this paper we outline some ideas of such language, and towards extracting them. * During this work Gudmund Grov has been employed jointly by University of Edinburgh and Newcastle University. and constrained use of Z [FW08] -is the so-called "posit and prove" approach: a designer posits development steps and then justifies that they satisfy earlier specifications by discharging (often automatically generated) proof obligations (POs). A large proportion of these POs can be discharged by automatic theorem provers but "some" proofs require user interaction. Quantifying "some" is hard since it depends on many factors such as the domain, technology and methodology used -it could be as little as 3% or as much as 40%. For example, the Paris Metro line 14, developed in the Bmethod, generated 27, 800 POs (of which around 2, 250 required user-interaction) [Abr07] -the need for interactive proofs is clearly still a bottleneck in industrial application of FM, notwithstanding high degree of automation. THE FORMAL METHODS PROBLE

    The development and deployment of formal methods in the UK

    Full text link
    UK researchers have made major contributions to the technical ideas underpinning formal approaches to the specification and development of computer systems. Perhaps as a consequence of this, some of the significant attempts to deploy theoretical ideas into practical environments have taken place in the UK. The authors of this paper have been involved in formal methods for many years and both have tracked a significant proportion of the whole story. This paper both lists key ideas and indicates where attempts were made to use the ideas in practice. Not all of these deployment stories have been a complete success and an attempt is made to tease out lessons that influence the probability of long-term impact.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    A Rely-Guarantee Specification of Mixed-Criticality Scheduling

    Full text link
    The application considered is mixed-criticality scheduling. The core formal approaches used are Rely-Guarantee conditions and the Timeband framework; these are applied to give a layered description of job scheduling which includes resilience to jobs overrunning their expected execution time. A novel formal modelling idea is proposed to handle the relationship between actual time and its approximation in hardware clocks.Comment: This paper will appear in a Festschrift - on publication we will insert a pointer to the boo

    Deriving specifications of control programs for cyber physical systems

    Get PDF
    Cyber Physical Systems (CPS) exist in a physical environment and comprise both physical components and a control program. Physical components are inherently liable to failure and yet an overall CPS is required to operate safely, reliably and cost effectively. This paper proposes a framework for deriving the specification of the software control component of a CPS from an understanding of the behaviour required of the overall system in its physical environment. The two key elements of this framework are (i) an extension to the use of rely/guarantee conditions to allow specifications to be obtained systematically from requirements (as expressed in terms of the required behaviour in the environment) and nested assumptions (about the physical components of the CPS); and (ii) the use of time bands to record the temporal properties required of the CPS at a number of different granularities. The key contribution is in combining these ideas; using time bands overcomes a significant drawback in earlier work. The paper also addresses the means by which the reliability of a CPS can be addressed by challenging each rely condition in the derived specification and, where appropriate, improve robustness and/or define weaker guarantees that can be delivered with respect to the corresponding weaker rely conditions
    • 

    corecore