
This is a repository copy of Deriving specifications of control programs for cyber physical
systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/143045/

Version: Accepted Version

Article:

Burns, Alan orcid.org/0000-0001-5621-8816, Hayes, Ian and Jones, Cliff (2019) Deriving
specifications of control programs for cyber physical systems. Computer journal. ISSN
1460-2067

https://doi.org/10.1093/comjnl/bxz019

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by White Rose Research Online

https://core.ac.uk/display/199223872?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Deriving specifications of control

programs for cyber physical systems

ALAN BURNS
1 , IAN J. HAYES

2
AND CLIFF B. JONES

3

1Department of Computer Science, University of York, YO10 5GH, UK
2School of Information Tech. and Electrical Enġ, The University of Queensland, 4072, Australia.

3School of Computing Science, Newcastle University, NE1 7RU, UK

Email: alan.burns@york.ac.uk

Cyber Physical Systems (CPS) exist in a physical environment and comprise both physical

components and a control program. Physical components are inherently liable to failure and yet

an overall CPS is required to operate safely, reliably and cost effectively. This paper proposes

a framework for deriving the specification of the software control component of a CPS from an

understanding of the behaviour required of the overall system in its physical environment. The

two key elements of this framework are (i) an extension to the use of rely/guarantee conditions to

allow specifications to be obtained systematically from requirements (as expressed in terms of the

required behaviour in the environment) and nested assumptions (about the physical components of

the CPS); and (ii) the use of time bands to record the temporal properties required of the CPS at

a number of different granularities. The key contribution is in combining these ideas; using time

bands overcomes a significant drawback in earlier work. The paper also addresses the means by

which the reliability of a CPS can be addressed by challenging each rely condition in the derived

specification and, where appropriate, improve robustness and/or define weaker guarantees that can

be delivered with respect to the corresponding weaker rely conditions.

Keywords: Cyber-physical systems; real-time systems; time bands; rely-guarantee; concurrency;

embedded systems

Received August 8th, 2018; revised December 7th, 2018

1. INTRODUCTION

The construction of large socio-technical real-time systems,

such as those found in cyber-physical applications, presents

a number of significant challenges, both technical (see for

example [1]) and organisational. The complexity of such

systems makes all stages of their development (requirements

analysis, specification, design, implementation, deployment

and maintenance/evolution) subject to failure and costly re-

working. This paper presents a framework that makes it

possible to relate the specification of the overall system to

that of a suitable control program. The objective being

to suggest a way to produce resilient systems that degrade

gracefully when physical failures occur.4

Typically Embedded Systems (ES) and Cyber Physical

Systems (CPS) are comprised of a control program linked

(by sensors and actuators) to physical components that can

both sense and bring about changes in the physical world.

The overall system requirements (the “client’s view”) are

about what should happen in the physical world. Many

authors (e.g. [2]) have argued that this is therefore a sensible

place to ground a specification.

Given that there are known techniques for developing

4There are of course other important considerations with CPS such as

performance and security. Whilst recognising their importance, these issues

are not addressed in the current paper.

programs to satisfy formal specifications, an obvious

challenge is that of arriving at a formal specification for

software control components of an ES or CPS. This is a

challenge addressed by many authors (see Section 5 on

related work).

The idea of starting from an understanding of what should

happen in the physical world was followed in previous

work but encountered a serious complication that made

it impracticable to tackle larger applications. The key

contribution of this paper is to link to the “time band”

framework to overcome the complication.

Earlier publications by the current authors [3, 4] argued

that:

• for an ES, it is normally easier to establish the

requirements of the overall system (than to specify the

control system in isolation) by relating the specification

to the physical phenomena;

• in general, it is impractical to model the physical

components of the ES completely and it is far more

realistic to record assumptions about their behaviour;

• both the overall specification and the assumptions must

be reviewed with the client;

• further, to analyse safety aspects one requires an overall

system specification;

• notation such as rely/guarantee conditions can be used

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

2 A. BURNS, I. J. HAYES AND C. B. JONES (FEBRUARY 14, 2019 06:29)

to record both the wider system behaviour and the

assumptions about the physical sub-components of the

ES;

• it is possible to prove that, under the assumption that

the physical components behave according to their

specifications, the control software will ensure the

overall system requirements are met.

The cited publications however ran into a serious problem

which was the description of the temporal behaviour. The

timing of everything from the overall system through the

physical sub-components of the ES down to the behaviour

of the control program has to be described, and if the

description is given on a single time index (as in [3, 4])

the descriptions become opaque. Moreover, it is alarmingly

easy to make mistakes by not realising the consequences of

formulae.5

The key development in this paper is the combination of

the ideas above with the “Time Band” concept introduced

in [5] (and expanded upon in this paper). The approach here

argues that systems tend to exhibit temporal behaviour at

a number of different granularities and trying to present a

specification on a single time axis becomes unworkable.

This paper brings together a collection of ideas (intro-

duced in Section 2) to provide an overall framework for

specifying the required behaviour of the software compo-

nents of embedded systems and, more generally, cyber phys-

ical systems.

The method of presentation employed in this paper is to

develop an illustrative example (in Section 3) of one use

of the framework.6 This illustrates that the complications

in the earlier papers [3, 4] –that resulted from expressing

assumptions and commitments on a single time axis– can be

neatly resolved by using time bands [5]. The central role of

this paper is to show that this unique combination of research

ideas offers a realistic way of deriving the specification of a

control system from the overall requirements of a CPS.

Section 4 examines fault tolerance; related work is

covered in Section 5 and conclusions drawn in Section 6.

The notation used in the current paper is intended to be

illustrative: it is not all formally defined nor is it claimed

that it would cover all examples. This paper aims to set

out the general approach — later work will formalise one

or more sets of detailed notation and proof obligations.

Our experience with working on industrial applications

(e.g. [6, 7]) indicates that it is necessary to fit in with specific

notations used.

2. CONCEPTS UNDERLYING THE FRAMEWORK

This section briefly introduces the theories and modelling

techniques that are integrated into our proposed framework.

5A specific instance of this in drafts of [4] was that a version of a

temporal formula combined the ratio of time that the gate should be open

with details about the time to activate the gate mechanism. On close

inspection, it was realised that the single formula incorrectly forced copying

of the pattern in the first hour to all subsequent periods. Using time bands,

the ratio of open:close times is expressed separately from details of gate

traversal timing and each band has a separate precision.
6Some other examples are mentioned in Section 6.

Citations are provided to detailed descriptions; illustrations

of their use are given in the case study. Our focus in this

paper is concepts rather than formal description which will

be provided in later publications.

2.1. Rely/Guarantee conditions

The idea of specifying discrete, isolated, components

with pre conditions (predicates of a single state) and

post conditions (relations between initial and final states)

is familiar from program development methods such as

VDM [8], Z [9], B [10] and Event-B [11]. Rely and

guarantee conditions were put forward in [12, 13, 14]

as a way of specifying and developing shared-variable

concurrent programs.7

The basic Rely/Guarantee idea is simple: just as post

conditions abstract from any algorithm to achieve the

transition from initial to final state, guarantee conditions

record a relation –in advance of designing the algorithm–

that defines the maximum interference that the eventual

code can inflict on its environment. The analogue of a

pre condition (which records assumptions that the developer

can make about the states in which the component will

be initiated), is a rely condition that records a relation

that expresses the interference that the eventual code must

tolerate. It is important to bear in mind that pre and

rely conditions are assumptions that a developer is invited

to make; in contrast, guarantee and post conditions are

obligations on the code to be created.

Although the rely/guarantee idea originated in the context

of the design of concurrent programs, it became clear that

the environment of a component could include physical

components. Some history of this evolution is mentioned

in [3, 4]. Developing hybrid applications such as braking

systems for cars brings in the need to use rely conditions

on continuously varying values. Assumptions about, for

example, the maximum rate of change of speed provide a

basis for deciding sampling rates on sensors. As well as

capturing assumptions about the physical world in which

the CPS will operate, rely conditions can also be used to

document assumptions about the physical sub-components

of a CPS.

Figure 1 illustrates, for a CPS that is constructed from

software (control) and the physical hardware, the top-level

use of rely (R) and guarantee conditions (G). Behaviourally,

the requirement is that the guarantee condition needs

to be satisfied (only) as long as the rely condition is

respected. Stating this negatively, if the environment makes

a transition that is not in accord with the rely condition, the

developed code is free from further obligations (just as an

implementation is unconstrained if invoked in a starting state

that does not satisfy its pre condition).

Unsurprisingly, the proof obligations concerning the

development of concurrent components (that are specified

with rely/guarantee conditions) are more complicated than

7A significant reworking [15, 16, 17] of the rely/guarantee approach

provides a more algebraic view of the various assumptions and constraints

by recasting them in the refinement calculus style [18, 19].

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

DERIVING SPECIFICATIONS OF CONTROL PROGRAMS FOR CYBER PHYSICAL SYSTEMS 3

environment

R

G

CPS

control

R

G

physical

R

G

G

R

FIGURE 1. Top-Level Description of CPS

those for sequential programs using Hoare-triples [20]. The

proof obligations for concurrency include the matching of

rely and guarantee conditions mentioned above as well as

laws for the distribution of such conditions over sequential

and concurrent program compositions. The key point is that

discharging the proof obligations establishes that a design

that uses a particular programming construct will, if all

of the sub-components satisfy their specifications, satisfy

the overall specification. This gives rise to the crucial

property that development is compositional in the sense

that the specification of a component determines everything

that governs its functional acceptance; when developing a

component from its specification, neither the specification

of the larger system, nor those of sibling components need

to be taken into consideration.

A single R/G specification can have internal structure so

that in the event of some aspects of the rely condition not

being true, other aspects that are still satisfied will ensure

that some behaviours are guaranteed. Indeed resilience

can be represented by hierarchically related R/Gs – strong

rely conditions guarantee full functionality, weaker rely

conditions guarantee less (perhaps only the safety-critical

parts), even weaker rely conditions guarantee only safe fail-

stop behaviour. This is discussed further in Section 4.

2.2. HJJ and Refinement

An ES consists of a software control system and physical

system components; the connections between the former and

the latter are sensors and actuators. The overall behaviour of

the ES clearly depends on both aspects. It is argued above

that the overall system is easier to specify than the controller

itself; what is proposed here is that the specification of the

software control system can be derived from the overall

system specification. To check this formally, it must be

possible to reason about the behaviour of the physical

components but, in general, building a complete model of

such physical components is unrealistic and it is far easier to

document (reviewable) assumptions about their behaviour.

The test then is, given the specification of the control

system and the assumptions about the physical components,

can it be shown that the overall system specification follows.

The ‘and’ in the previous sentence behaves like an addition;

what is actually needed is something more like subtraction.

Given the specification of the overall system, one records

assumptions about the physical components and derives a

specification for the control system that will make the above

addition hold.

The observation that rely/guarantee thinking can be

applied to systems that interact with the physical world led

to an approach that is sometimes referred to briefly by the

initial letter of the family names of its three initiators (Hayes,

Jackson and Jones): the ‘HJJ’ approach [3, 4]:

• the phenomena of interest with CPS often vary

continuously

• it is nearly always easier to obtain agreement on the

behaviour expected of an overall system than it is to

start by specifying the control system

• this follows from the fact that assumptions have to be

made about both the behaviour of components that are

external to the system and physical components within

the system

The HJJ approach advocates that the (continuous)

behaviour of the overall system is described first in terms

of phenomena that can be observed in the physical world;

assumptions about those things outside the control system

are then recorded (these include assumptions about external

components and physical components of the CPS). The

specification of the control system is that, if all of the

assumptions are fulfilled, the behaviour of the cyber system

is such that the required overall system behaviour is

achieved. It is clearly mandatory that, as well as agreeing the

overall specification with the customer/client, the validity of

the assumptions about the physical components are agreed.

In summary, HJJ is the process of moving from

requirements that are expressed in terms of state in the

environment, to the specification of the control system which

can only include input/output data (and internal variables);

in making this transition, assumptions are recorded using

rely and guarantee conditions. Refinement can then be

applied to translate the software specification into executable

code.

Experience with the approach described in [3, 4] was

positive but had a major drawback that descriptions of

various requirements on a single time axis became confusing

and unintuitive. Resolving this with the help of time bands

is precisely the contribution of the current paper.

2.3. Time Bands

The above technologies adequately address the functional

properties of the ES or CPS, but do not cater for the

important temporal aspects of these systems. The motivation

for the timebands framework comes from a number of

observation about complex CPS [5, 21, 22, 23, 24]:

• the dynamics of a system (how quickly things change)

are central to understanding its behaviour

• systems can be best understood by distinguishing

different granularities (of time), i.e. there are different

abstract views of the dynamics of the system

• it is useful to view certain actions (events) as atomic and

“instantaneous” in one time band, whilst allowing them

to have internal state and behaviour that takes time at a

more detailed level of description

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

4 A. BURNS, I. J. HAYES AND C. B. JONES (FEBRUARY 14, 2019 06:29)

• the order (but not necessarily the time) in which events

occur is important; precedence can give rise to causality

• the durations of certain actions are important, but the

measuring of time must not be made artificially precise

and must allow for tolerance (non-determinacy) in the

temporal domain

• at each level of temporal behaviour similar phenomena

are observed (e.g. cyclic/repetitive actions, deadline-

driven actions, synchronous and asynchronous event

handling, agreement, coordination).

The central notion in the framework is that of a time band

that is defined by a granularity, G , (e.g. 1 minute) and a

precision, ρ, (e.g. 3 seconds). Granularity defines the unit of

time of the band; precision bounds the maximum duration of

an event that is deemed to be instantaneous in its band.

A system description is not limited to a single time axis

but can be given more clearly in terms of a finite set of

partially ordered bands. System activities are placed in some

band B if they engage in significant events at the time scale

represented by B, i.e. they have dynamics that give rise

to changes that are observable or meaningful in band B’s

granularity.

A complete system specification must address all dynamic

behaviours. At the lowest level, circuits (e.g. gates)

have propagation delays measured in nanoseconds or

even picoseconds, at intermediate levels tasks/threads have

rates and deadlines that are usually expresses in tens of

milliseconds, at the higher levels missions can change every

hour and maintenance may need to be undertaken every

month. Understanding the behaviour of circuits allows the

worst-case execution time of tasks to be predicted, this

allows deadlines to be checked and the schedulability of

whole missions to be verified. The need to argue about

temporal behaviours at many levels of granularity should

not by addressed by mapping all temporal properties and

constraints to the finest level; the resulting model would

be unmanageable. Rather, what the Timeband framework

provides is the ability to use the different time granularities

within the system to structure its specification into a number

of distinct bands. This results in system verification

being simplified to proof obligations within each band, and

consistency checking between bands.

The basic means of presenting a specification over a

number of bands is by relating (instantaneous) events in one

band to activities, with duration, in finer bands. We use the

convention that events are represented by lower case letters,

and activities by upper case. Events in band B may map to

activities that have duration at some lower (or finer) band

C. An illustration of a three band system with the mapping

of events to activities is shown in Figure 2, where B, C

and D are timebands, x, y1, y2 and y3 are events, and Y

and Z1 are activities. The curved diagram allows events at

coarser bands to be represented by more detailed activities

at the finer bands and thus illustrates that the finer band is

a magnification of its coarser neighbour – the notion that

there is more ‘time’ in finer bands (e.g. more milliseconds

than seconds in an hour). An activity is defined to be a

y3

D C B

Y

Time

Z1

x

y1

y2

FIGURE 2. Timebands B, C and D with event x in band B

implemented by activity Y in band C, which uses events y1, y2

and y3 in band C, where event y1 is implemented by activity Z1 in

band D

sequence of (partially-ordered) events. The start and end of

an activity A are themselves represented as events, A↑ and

A↓, respectively.

The timeband framework [5] introduces and defines a

number of notions such as simultaneous, ordered, delays,

deadlines and duration. These are introduced as required in

the case study. The functional and the temporal behaviours

of a system are related by two concepts: accuracy and

may/must.

The accuracy of a reading refers to an external

continuously changing physical entity such as temperature.8

With error-free behaviour a sensed value, S , is obtained by

a read event (in some time band with precision ρ). But the

exact time when this read occurs is not known precisely. The

reading is said to be accurate to the extent S ± a , where

a is the maximum change that can occur to the physical

phenomena in time ρ.

Within a time band all entities share the same precision

and hence imprecision. This allows events to be combined

(for example, two simultaneous events being combined into

one). There is a common shared view of the precision

of time itself within the band. Any event that is defined

to occur at a particular time will have the same bound

before it is declared to be too late (or too early). A single

notion of precision facilitates a simple rule for composition.

Different dynamic phenomena will, however, have different

assessments of their accuracy. Informally, the reading of a

slowly changing phenomena will be more accurate than the

reading of a rapidly changing phenomena.

The accuracy issue often makes it impossible to specify

a precise behaviour for a system. A specification must,

however, bound the allowable behaviours despite the

uncertainty. The may/must notion provides a convenient

way of specifying bounds. Because a program cannot

precisely determine the value and/or timing of a sampling

of a value in the physical world, a specification can allow

8The example studied in the current paper avoids most issues of

continuous behaviour by focussing on one particular subsystem. In

a thermostat application, the assumed maximum rate of variation of

temperature would be used to determine the required sampling frequency

to stay within the required room temperature. An even more interesting

example would be controlling the speed of a vehicle.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

DERIVING SPECIFICATIONS OF CONTROL PROGRAMS FOR CYBER PHYSICAL SYSTEMS 5

a range of possible behaviour when sensed value changes

may be observed but oblige behaviours when sensed value

changes must be observed. One application of this idea

is given in Section 4 but the notion is general and can be

deployed in many contexts.

2.4. Integrating Timebands and HJJ

The main focus and contribution of this paper is to integrate

the modelling of real-time properties as represented by

the timeband framework with the HJJ means of deriving

a specification of the (software) control system from the

overall requirements of the ES/CPS.

Each timeband has an associated set of observable

variables, with the possibility that (adjacent) timebands can

share some variables. In our earlier timebands work [5],

the state of an observable variable associated with an event

was a set of values corresponding to the values of the

variable during the execution of its implementing activity.

A simplification (or abstraction if you prefer) in the current

paper is that an event is associated with just two states –

before and after the event – and all intermediate states are

hidden (ignored). This better represents the intent behind

timebands that events are instantaneous within their band,

and allows one to give an abstract specification of an event

e in terms of its pre and post conditions, pre-e and post-e ,

respectively.

e

A

guar -A

rely-A

I ∧ pre-A post-A ∧ I

repr repr

pre-e post-e

FIGURE 3. Combining rely-guarantee with timebands

If events in a timeband B are implemented by activities in

a timeband C , the state space of C may contain,

• state variables of B that are shared,

• state variables of B that are shared but with their type

extended to allow additional values that the variables

may take on only in intermediate states (i.e. the

additional values are not visible in timeband B), and

• new state variables introduced in timeband C .

The initial and final states of an event in band B correspond

to the initial and final states of its implementing activity in

band C via the relation repr (see Fig. 3).

Each activity, A, also has pre and post conditions, pre-A
and post-A. All activities within the band share an invariant,

I , that is maintained by every activity. The activity refines

the event using the standard data refinement relation but

augmented with a requirement that the time taken for the

activity is bounded by the precision of band B (as measured

in terms of the granularity of band C) – see Fig. 4.

As activities take time, they are also augmented with a

rely condition, rely-A, stating any assumptions about the

behaviour of the environment during the activity, and a

guarantee condition, guar -A, that is a commitment of the

activity over its duration. All conditions may refer to (only)

state defined in the relevant time band. During activity A, as

long as rely-A remains true, guar -A is required to be true.

Other aspects of the integration are introduced by means of

the case study.

3. THE SLUICE GATE EXAMPLE

In order to illustrate the notions and methods described in

this paper, the ‘sluice gate’ case study [2] is employed. The

need to irrigate an area of land could be met by the use

of a number of sluice gates that control the flow of water

through irrigation ditches. Any specific sluice gate will need

a controller and the specification of this controller forms the

focus of the case study. However the wider picture of a CPS

that monitors rain fall, flood prediction, seasonal variation

and even climate change gives the context for the application

— this gives rise to behavioural description over a number

of time bands:

Climatic To allow long term trends to be expressed.

Seasonal To allow the controls to reflect growing seasons.

Month To allow anticipated rain-fall to be expressed.

Day To allow coordination between multiple (possible

failing) gates to be expressed.

Hour To allow the actual control algorithm to be expressed

for a single gate.

Minute To allow the gate’s main movements to be

modelled.

Seconds To allow the gate’s settling time to be modelled.

Millisecond To allow the behaviour of the sensors and

switches to be expressed.

Microsecond To allow computation properties, such as

worst-case execution time to be expressed.

It is important to note that different physical phenomena

are linked to these time bands: assumptions about rainfall

would have to be made at the month band but play no

part once concern passes to finer levels; similarly, water is

actually of no concern beyond the day band — finer bands

are only concerned with movement of the gate.

In this study we focus only on the requirements for the

controller of a single gate. The physical structure of such a

sluice gate is represented in Figure 5. This gate is controlled

by a single motor and there are sensors that indicate when

the gate is at the top and when it is at the bottom. The motor

is controlled by a direction indicator (up or down) and an

on/off ‘switch’. The expected behaviour of a single gate

involves periods of time when the gate is (fully) open and

periods when it is closed (no water flows). The physical

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

6 A. BURNS, I. J. HAYES AND C. B. JONES (FEBRUARY 14, 2019 06:29)

pre-e(s) ∧ repr(s, c) ∧ I (c) ⇒ pre-A(c) (1)

pre-e(s) ∧ repr(s, c) ∧ I (c) ∧ post-A(c, c′) ⇒ (∃s ′ · repr(s ′, c′) ∧ post-e(s, s ′)) ∧ I (c′) ∧ t ′-t ≤ ρ (2)

FIGURE 4. Data refinement between timebands: s represents the initial state of the coarser (more abstract) band and c the state of

the finer band, and s ′ and c′ the respective final states.

Top &

Bottom

Sensors

Motor
Gate

Mechanism Water

FIGURE 5. A single sluice gate

components of the ES are referred to as the MGS (motor,

gate and sensors) – see top level illustrative diagram in

Figure 1.

The design decision to use a motor with top and bottom

sensors and relevant actuators to interface to the gate is

most clearly described over three time bands:9 Each band

is defined by its granularity (G) and precision (ρ), and

into each band will be placed relevant State, Events and

Activities.

Hour Gh = 1 hour, ρh = 3 minutes.

Minute Gm = 1 minute, ρm = 3 seconds.

Seconds Gs = 1 second, ρs = 10 milliseconds.

These are the three main time bands used to organise the

description of the case study. The granularity of a band does

not have to correspond to a unit of measurement of time but

using standard units of time allows for an easier presentation

of the example.

3.1. Hour Band

The coarsest band for the single gate problem is:

Hour Gh = 1 hour, ρh = 3 minutes.

Remember that the gate position is a physical world

phenomenon: the first step of our process is to ground the

system description in terms of physical world phenomena at

a level of time discourse appropriate to the customer. The

client could express his/her requirement in terms of water

flow (per minute, per hour or per day), but having chosen a

9To capture details at the electronic level would require much finer

bands and to specify seasonal behaviour a coarser band would be required.

However, for a demonstration of the framework, we concentrate on just

three adjacent bands.

means of controlling the flow (i.e. a sluice gate) it is more

natural for the requirement to be expressed in terms of the

gate alternating between being open and closed for given

time periods.

Once placed in the Hour band this requirement becomes

unambiguous. By placing the requirement in this band it

implies that issues within the precision of the band (i.e. 3

minutes in any one hour) are immaterial to the client. Note

that this important and reasonable notion of approximation

comes for free from the time band view; it is not necessary

to write a specification in terms of minutes (or seconds!) to

specify the agreed flexibility.

To give a top-level description of the control program (in

the Hour band) requires one state variable and two events.

These are declared together with their necessary pre and post

conditions (expressed using the state variable):

SluiceGateh : (gate : {OPEN, CLOSED})

The state of the sluice gate in the hour band, SluiceGateh ,

has a single local component gate , which can be either open

or closed.10 In the pre/post conditions below gate refers to

the initial value of this component and gate ′ to its final value.

event open-gate

var out gate

pre gate = CLOSED

post gate ′ = OPEN

event close-gate

var out gate

pre gate = OPEN

post gate ′ = CLOSED

Both open-gate and close-gate are events of the CPS.

They are viewed, within the context of the hour band,

as occurring instantaneously. Their behaviour is specified

in terms of the desired behaviour of the physical gate,

even though the yet-to-be-designed control software cannot

directly move the gate (it must communicate with the

physical components using the sensors and actuators that

are introduced at a finer time band). Note that as

both events have write access to gate they cannot occur

simultaneously (i.e. their defining activities cannot overlap).

The assumption is made that in the absence of events that

explicitly change state then the state does indeed not change.

So between open-gate and closed -gate the state of the gate

is constant.

From the definition of these events and the system state,

the required schedule for the control program/activity can

be derived. The schedule activity is parameterised with the

number of hours the gate should be open, OG , alternating

with the number of hours it should be closed, CG . The

10If more than one sluice were required, the structure containing the

component gate would need to be promoted to a type.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

DERIVING SPECIFICATIONS OF CONTROL PROGRAMS FOR CYBER PHYSICAL SYSTEMS 7

values of these parameters are assumed to be determined

by a yet coarser timeband; a typical activation might be

Schedule(2hr , 10hr).

activity Schedule1(OG ,CG : hour)

var out gate

pre gate = CLOSED

rely true

guar (open-gateto nextclose-gate) ⇒ dur = OG

(close-gate to nextopen-gate) ⇒ dur = CG

post gate ′ = CLOSED

In this, and following activities, there is an implied ‘and’

between the lines of the guarantee (and rely) conditions.

Line breaks are, however, deemed to effect the priority of

logical operators in the sense that each line is assumed to be

in parentheses. Relies and guarantees are required to hold for

all subintervals of the time interval over which the activity

Schedule1 operates. The interval predicate (e1 to next e2)
succeeds for an interval I , if I starts with event e1 and

ends in event e2 and there are no intervening occurrences

of e2. The interval expression dur gives the length of the

interval. The precondition refers to system start up, when

Schedule begins. The post condition requires a Schedule

activity terminate only if the gate is closed; this is consistent

with completing some number of complete cycles of the

behaviour.

There is no informative rely condition in this time band;

but the guarantee condition gives the appropriate level of

separation between the opening and closing events. This

specification can be refined to the following (where we

only give the modified behaviour – the rely and guarantee

conditions etc. are unchanged):

activity Schedule2(OG ,CG : hour)

var out gate

do (open-gate;wait(OG); close-gate;wait(CG))∗

Here, the behaviour of the control activity is specified

after the keyword do. The ∗ indicates that the behaviour

allows any number of complete cycles. The wait primitive

delays the behaviour of schedule for the designated number

of hours (plus or minus 3 minutes).

The realisation of these two events by activities of a finer

time band requires details of the behaviour of the hardware

implementing the sluice gate mechanism: motor, gate and

sensors (MGS); these are more sensibly described at a finer

time band.

Before moving to a finer band, a simple extension

demonstrates why it is necessary to express behaviours

over a range of time granularities. It is reasonable to

assume that the irrigation policy represented by the above

schedule would not remain constant all year; rather it

is likely to be seasonal; for example, in the growing

season (summer), the gate may need to be open for longer

periods of time, e.g. Schedule(3hr , 9hr); in winter, there

might be a minimum movement of the gate (to keep it

operational); so, Schedule(1hr , 23hr). Switching between

the schedules would be defined in the Seasonal band with a

simple precondition used to determine the appropriate active

schedule.

By including bands that are more associated with human

activities than computational ones it is possible to represent

important aspects of the complete control program. For

example, in the Seasonal band it will be necessary to

determine the current season, but should this be defined

by the Meteorological Office or by the consensus view of

the users of the irrigation system? These control-related

decisions will need to be expressed in the Seasonal band,

along with any necessary assumptions (rely conditions).

3.2. Minute Band

It is typical that attention moves to a finer time band (than

that of the mechanical phenomena) when the control process

is to be addressed.

Minute Gm = 1 minute, ρm = 3 seconds.

The objective in the finer Minute band is to map (implement)

the open-gate and close-gate events to activities. In order to

do that, the necessary physical components (the sensors and

the motor that drives the gate) are considered. The properties

of these components are stated in terms of the guarantees

they provide and the rely conditions they can assume (see

MGSm in Figure 6). The open and close gate activities are

then implemented assuming the physical components will

adhere to their guarantees, provided the activities do not

contravene the rely conditions of the physical components.11

In this timeband, as well as being open or closed, the

position of the gate can also be in the state BETWEEN; this

acknowledges the fact that, in this band, the amount of time

to move the gate between its extreme positions is significant.

The variable gate is inherited from the coarser band but

its type is extended with the additional value BETWEEN.

Furthermore, the state in this band contains components

representing Boolean sensors (top and bottom) and an

actuator (direction). At this level motor is introduced to

represent the state of the entity within the MGS that causes

the gate to move. The control over the motor (via power

being either on or off) is necessarily introduced at the next

finer time band.

SluiceGatem : gate : {OPEN,CLOSED,BETWEEN}
top : Boolean

bottom : Boolean

direction : {UP, DOWN}
motor : {RUNNING, STOPPED}

As expected, if SluiceGatem .gate is BETWEEN the

open/closed state in the hour band, SluiceGateh .gate , is

not defined. The new events of the minute band are

set-direction and set-motor ; they are defined below. But

events such as set-motor cannot of themselves affect the

position of the gate , they can only write to actuators; the

control system is described in terms of the signals it sends

to the actuators and reads from sensors. To emphasise this

11The topic of fault tolerance is addressed in Section 4.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

8 A. BURNS, I. J. HAYES AND C. B. JONES (FEBRUARY 14, 2019 06:29)

physical MGSm

var in direction,motor

out gate, top, bottom

pre motor = STOPPED ∧ gate = CLOSED

rely direction = UP ∧motor = RUNNING ∧ gate = OPEN ❀0 motor = STOPPED

direction = DOWN ∧motor = RUNNING ∧ gate = CLOSED ❀0 motor = STOPPED

⊡(motor = RUNNING) ⇒ (direction ′ = direction)

guar direction = UP ∧motor = RUNNING ❀1 gate = OPEN

direction = DOWN ∧motor = RUNNING ❀1 gate = CLOSED

⊡(motor = STOPPED) ⇒ gate ′ = gate

⊡(top ⇔ gate = OPEN)
⊡(bottom ⇔ gate = CLOSED)

FIGURE 6. Specification of behaviour of physical components in the Minutes timeband

point, notice that the control system would behave equally

well if it were connected to a software simulator rather than

to a physical gate.

To justify that the combined control and MGS compo-

nents satisfy the overall specification, rely conditions are re-

quired about the correspondence between the sensors and the

position of the physical gate.

Before tackling the implementation of the open and close

gate activities, one needs to understand the properties of

the given hardware components. These are represented by

the behaviour of the MGS and are recorded as the relies

and guarantees of the MGSm system (see Figure 6). These

reflect properties of the hardware over any time interval (at

the minute band) in which they are operating correctly and

hence each rely and guarantee condition is interpreted as

holding over any time interval. The precondition refers to

system start up, before MGS is engaged.

The notation p ❀n q means that, if p holds continuously

then, within n time units (of the band) q will hold and then

q continues to hold as long as p does, and p ❀0 q means

“immediate” (i.e. within the precision of the band).

The first two guarantees record that the gate will open

(close) within 1 minute (a minute being the granularity

of the band) if the motor is running with direction up

(down). The first two relies record the assumption that,

if the motor is moving up (down) and the gate reaches

the open (closed) position, then the motor will be stopped

immediately (i.e. within the precision of this band).

The notation ⊡ p is a predicate that holds for a time

interval if, for all times in the interval, p holds for the

state at that time. So the third rely condition requires

that the direction of travel of the gate is never changed

while the motor is running (direction is the value at the

start of the interval and direction ′ is the value at the end).

The third guarantee clause in the definition means that,

in any interval in which motor continuously has the value

STOPPED, the value of the gate does not change. The final

two guarantee conditions state that the top (bottom) sensor

being on corresponds to the gate being at the open (closed)

position.

Note the particular physical component identified in this

specification relies on three necessary properties of the

controlling software. The first two ensure that motor is

stopped immediately the gate reaches the top (or bottom).

By placing this rely condition in the minute band this need

for ‘immediate’ action can be implemented by an activity

(in a finer band) that has a duration of no more than ρm
(i.e. 3 seconds). The final requirement is that the controlling

software never changes the direction of travel of the gate

while the motor is engaged (because that may damage the

gate mechanism).

In terms of the performance of the MGS , it guarantees

to lift the gate within 1 minute. This easily satisfies the

implied requirement, from the hour band, to open the gate

within ρh (i.e. 3 minutes). Obviously the decision to

deploy this control system must include a check that the

physical MGS component is in conformance with the rely

conditions. Different MGS may have different requirements

and capabilities.

As noted earlier, the new events introduced within the

minute band are set-direction and set-motor .

event set-direction(d : {UP, DOWN})

var out direction

in motor

pre motor = STOPPED

post direction ′ = d

event set-motor(v : {RUNNING, STOPPED})

var out motor

post motor ′ = v

Note that as one of these events has write access to motor

and the other read access they are prevented from occurring

simultaneously (and their associated activities hence cannot

overlap).

The code for the activity Open-Gate1 in Fig. 7 in

the minute band corresponding to the open-gate event is

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

DERIVING SPECIFICATIONS OF CONTROL PROGRAMS FOR CYBER PHYSICAL SYSTEMS 9

activity Open-Gate1

var in gate, top
out direction,motor

pre true

invariant motor = STOPPED

rely direction = UP ∧motor = RUNNING ❀2 gate = OPEN

⊡(motor = STOPPED) ⇒ gate ′ = gate

⊡(top ⇔ gate = OPEN)

guar direction = UP ∧motor = RUNNING ∧ gate = OPEN ❀0 motor = STOPPED

direction = DOWN ∧motor = RUNNING ∧ gate = CLOSED ❀0 motor = STOPPED

⊡(motor = RUNNING) ⇒ direction ′ = direction

post gate ′ = OPEN

FIGURE 7. Activity Open-Gate1

obtained by the application of a number of HJJ/refinement

steps. An overview of the relationships is outlined in

Fig. 3. First the event itself is refined into an activity that

can take advantage of the conditions that are guaranteed

by MGSm . The relationship between the states at the

two levels, repr , in this case is just that the values of

gate correspond. Refinement allows weakening of the

precondition – see (1) in Fig. 4 – from (gate = CLOSED)
to true, (i.e. it can be omitted). The postcondition may also

be strengthened (2), although it remains unchanged in this

case. It has additional variables defined in the minute band

state. Both the precondition and postcondition are implicitly

strengthened with the invariant (motor = STOPPED). Note

the invariant is assumed to hold initially via the precondition

of MGSm (Fig. 6).

The physical component MGSm operates in parallel with

the activity and hence Open-Gate1 can rely on the guarantee

of MGSm ; in this case two conditions in the guarantee are

not needed and are omitted from the rely of Open-Gate1
(although they are needed for Close-Gate1 which is not

detailed here). Symmetrically, the activity must guarantee

the rely of MGSm . Together these refinements result in the

first definition of the activity Open-Gate1 in Figure 7. The

definition of Close-Gate is similar.

Subsequent steps are within the minute band and are used

to remove direct access to state components that cannot

be accessed by the code. This is the process loosely

described above as subtracting (from the requirements in the

physical world) information about mechanical components

in order to derive a specification of the control system. For

example, in Open-Gate2, gate is no longer referenced but

the sensor variable top is. The rely condition below is

implied by the rely of Open-Gate1, and the guarantee below

implies the guarantee of Open-Gate1, assuming the rely of

Open-Gate1 holds.

activity Open-Gate2

var in top

out direction,motor

pre true

invariant motor = STOPPED

rely direction = UP ∧motor = RUNNING ❀2 top

⊡(motor = STOPPED) ⇒ top′ = top

guar ⊡(motor = RUNNING ⇒ direction = UP)
motor = RUNNING∧top ❀0 motor = STOPPED

post top′

The guarantees can now be used to define the required

behaviour of the activity. Note that motor is still referenced

at this level (via the set-motor event); in the Seconds band

this is replaced by use of an I/O routine that turns power on

and off to the motor.

We are now able to implement the activity at the

Minute band in terms of events in this band. The event

set-direction(UP) does not break the rely condition of

MGSm , not to switch the direction while the motor is

running, because the motor is assumed to be stopped

initially.

activity Open-Gate3

var in top

out direction,motor

do set-direction(UP)
→

set-motor(RUNNING);

await(top)
→

set-motor(STOPPED)

For events e and f , e
→

f requires that the behaviour

described by “e; f ” happens within the precision of the

band; e
→

f can be thought of as a single event with a

behaviour equivalent to the sequential composition of e

and f . In the second use of the simultaneous operator

above the first operand is the activity await(top); the

simultaneity requirement is then on the end event of the

await, await(top)↓, and the event set-motor(STOPPED).
As the Open-Gate activity is mapped from an event in

the hour band there is an implicit requirement that the entire

behaviour will take no more than ρh , i.e. 3 minutes.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

10 A. BURNS, I. J. HAYES AND C. B. JONES (FEBRUARY 14, 2019 06:29)

physical MGSs

var in power , direction
out motor

pre motor = STOPPED ∧ power = OFF

rely ⊡(motor 6= STOPPED) ⇒ (direction ′ = direction)

guar power = ON ❀1 motor = RUNNING

power = OFF ❀1 motor = STOPPED

⊡(power = OFF) ∧motor = STOPPED ⇒ motor ′ = STOPPED

⊡(motor = STOPPED ⇒ power = OFF)

FIGURE 8. Specification of the physical motor, gate and sensors (MGS) in the Seconds band

In this code await(top) implies an interval of time that

is terminated by the recognition, in the control program, that

top is true. If top is true for a short interval of time (less than

ρm) then the interval may be terminated, but if top is true for

a duration equal or greater than ρm then it must terminate

within that interval.

The rely condition expressed within Open-Gate2
ensures that the maximum time between the events

set-direction(UP) and await(top)↓ is at most 2 minutes

(plus 2 ρm).

3.3. Seconds Band

The overall schedule sits naturally in the hour time band;

the physical movement of the gate was most appropriately

described at the minute band; detailed interactions with the

control component are best described at a finer time band. It

is fairly typical that this will be at least as fine as seconds.

Seconds Gs = 1 second, ρs = 10 milliseconds.

This is the appropriate time band to note that for the chosen

MGS the motor does not stop rotating instantaneously (as

observed in the Minute band). Rather there is an additional

short time interval in which the direction of travel should

not be changed. The state motor has two additional

possible values, STARTING and STOPPING, representing the

additional phases of motor operation. The control software

cannot directly control the motor, rather it must manipulate

an object in the interface (a boolean variable, power), local

to the implementation, that controls whether power has been

applied to the motor.

SluiceGates : motor : {RUNNING, STOPPED,
STARTING, STOPPING}

power : {ON, OFF}
direction : {UP, DOWN}

The additional behaviour of the equipment in the seconds

timeband is given by MGSs in Figure 8. It strengthens the

rely of MGSm to ensure the direction is only changed while

the motor is fully stopped (not starting, stopping or running).

Power on (off) guarantees to get the motor running (stopped)

within 1 second. If the motor is initially stopped and the

power is continuously off, the motor remains stopped. For

the motor to be fully stopped the power must be off.

It is important to understand that MGSs is not a

refinement of MGSm : the defined behaviour of the MGS

satisfies both MGSm and MGSs specifications.

The two activities can now be defined, firstly

Set-Direction:

activity Set-Direction1(d : {UP, DOWN})

var out direction

in power ,motor

pre motor = STOPPED ∧ power = OFF

rely ⊡(power = OFF) ∧motor = STOPPED ⇒
motor ′ = STOPPED

guar ⊡(motor 6= STOPPED) ⇒
(direction ′ = direction)

post direction ′ = d

The precondition is strengthened with power = OFF based

on the last guarantee of MGSs . This is satisfied by simple

code consisting of a single assignment.

activity Set-Direction2(d : {UP, DOWN})

var out direction

do direction ← d

The specification for Set-Motor is similarly derived:

activity Set-Motor1(v : {RUNNING, STOPPED})

var out power ,motor

rely power = ON ❀1 motor = RUNNING

power = OFF ❀1 motor = STOPPED

guar ⊡(motor 6= STOPPED) ⇒
(direction ′ = direction)

post motor ′ = v

Once more, it is easy to write code that satisfies the

specification.

activity Set-Motor2(v : {RUNNING, STOPPED})

var out power

do power ← (if v = RUNNING then ON else OFF);
wait(2)

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

DERIVING SPECIFICATIONS OF CONTROL PROGRAMS FOR CYBER PHYSICAL SYSTEMS 11

The wait(2) is required to ensure that when this activity

is completed the motor is RUNNING/STOPPED (not just

STARTING/STOPPING); the event set-motor has this as

a post-condition. The wait of 2 seconds is conservative

because the motor is assumed to stop in 1 second.

3.4. Summary

Although the description above has used some notation that

has not been fully formalised, all steps can be represented

as proof obligations about which one can reason. The

overall result is the following defined behaviours (and their

associated rely conditions) for the control software. Note

that the complete specification incorporates and requires all

three bands, it has not been refined down to just the Seconds

band.

In the Hour band:

activity Schedule(OG ,CG : hour)

var out gate

pre gate = CLOSED

do (open-gate;wait(OG); close-gate;wait(CG))∗

In the Minute band:

activity Open-Gate

var in top

out direction,motor , gate

invariant motor = STOPPED

rely direction = UP ∧motor = RUNNING ❀2

gate = OPEN

⊡(motor = STOPPED) ⇒ gate ′ = gate

⊡(top ⇔ gate = OPEN)

do set-direction(UP)
→

set-motor(RUNNING);

await(top)
→

set-motor(STOPPED)

activity Close-Gate

var in bottom

out direction,motor , gate

invariant motor = STOPPED

rely direction = DOWN ∧motor = RUNNING ❀2

gate = CLOSED

⊡(motor = STOPPED) ⇒ gate ′ = gate

⊡(bottom ⇔ gate = CLOSED)

do set-direction(DOWN)
→

set-motor(RUNNING);

await(bottom)
→

set-motor(STOPPED)

And in the Seconds Band:

activity Set-Direction(d : {UP, DOWN})

var in motor , power
out direction

pre motor = STOPPED ∧ power = OFF

rely ⊡(power = OFF) ∧motor = STOPPED

⇒ motor ′ = STOPPED

do direction ← d

activity Set-Motor(v : {RUNNING, STOPPED})

var out motor , power

rely power = ON ❀1 motor = RUNNING

power = OFF ❀1 motor = STOPPED

do power ← (if v = RUNNING then ON else OFF);
wait(2)

This 3-band specification has a number of implicit timing

constraints: the Open-Gate and Close-Gate activities

must always complete in 3 minutes, and the Set-Direction

and Set-Motor activities must always complete within 3

seconds. In addition, if the top (or bottom) sensor comes on

for more than the band precision of 3 seconds then it must

be recognised, and the Set-Motor activity also completed

within that 3 seconds.

To complete this specification the abstract events of

assigning values to direction and power and the internal

events of await(top) and await(bottom) would need

to be mapped to activities (code) that is represented

at a microsecond band. This would include register

manipulation and perhaps interrupt handling. However

for the purposes of this paper this partial specification is

sufficient.

The completed specification would guarantee that the

requirements of the customer, and the constraints of the

physical components of the ES/CPS are satisfied if all

the rely conditions from the environment and physical

components remain true. Resilience is, however, more than

just satisfying functional and temporal requirements. A key

aspect of resilience is fault tolerance which we address in the

following section. An important issue here is what happens

if one or more rely conditions fail.

4. FAULT TOLERANCE

Fault tolerance is a crucial aspect of any resilient ES or CPS.

Physical components are inevitably subject to failure;12 a

link to the standard defence of hardware redundancy is made

in Section 4.4. A control system cannot achieve its desired

behaviour in the presence of arbitrary failures of components

but a resilient system should not behave in a completely

uncontrolled way when (minor) failures occur.

It is important to remember that the overall specification

of a control system is the combination of all of the time

bands: time bands are not to be viewed as refinements.

Failures can however show themselves at any time band and,

in many cases, have the interesting property that a failure at

one band has to be handled as a fault at the next coarser band.

In the framework proposed in this paper, the assumptions

about the behaviour of the physical components of a

system have been recorded as rely conditions. The

approach to increased fault tolerance is to challenge each

rely condition and where appropriate (and possible) record

nested rely/guarantee conditions that –as well as specifying

ideal behaviour in the absence of component failures– also

record weaker promises when components fail to respect the

ideal rely conditions.

12The terms fault, error and failure from [25] are used here.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

12 A. BURNS, I. J. HAYES AND C. B. JONES (FEBRUARY 14, 2019 06:29)

The approach proposed here is to question rely conditions

systematically and see what can be achieved even if they do

not hold. Given the importance of time bands in this paper,

attention is also given to where an activity might take longer

than the precision of the band of the corresponding event.

The position taken to monitoring of rely conditions is,

however, that extra reporting of failures has to be specified.

It is, in general, not expected that a control program will

monitor for possible deviation from its rely conditions.

This situation can be compared with Michael Jackson’s

telling rejection13 of checking pre conditions: if a program

is to test its pre condition, good decomposition suggests

decomposing to a checking routine and one that executes

the main function; the latter has an identical pre condition

to that of the whole; which could result in an infinite regress.

Assumptions –be they pre or rely conditions– are invitations

to the developer to ignore certain possible situations; it is

the obligation of the deployer to ensure (i.e. prove) that the

context will meet the assumptions. Of course, there is no

objection to specifying diagnostic messages but such extra

checks must be part of the specification.

In the sub-sections below we first consider explicit rely

conditions that are part of the specification; then the implicit

temporal rely conditions that results from the use of events

in the timeband framework. We then consider the use of the

may/must notion within health monitoring code. Finally we

give a brief indication of how hardware redundancy schemes

fit into the picture.

4.1. Challenging the rely conditions

In this section we revisit the specification derived in Sect. 3

and address each rely condition in each time band. We note

that, in general, a single fault may lead to multiple broken

rely conditions and that a single broken rely condition

could have multiple possible faults that can cause it. For

a safety-critical system the necessary safety-case often

contains arguments (about the system’s integrity) based on

FTA (Fault Tree Analysis) and FMEA (Failure Modes and

Effects Analysis) [26]. Rely conditions provide a focus for

FMEA (and to some extent FTA) by being explicit about the

assumptions made for correct behaviour.

Section 3.4 records every rely condition. We now consider

each in turn.

In the Hour band the rely is unbreakable (being just true

it can never be false). No further action is required.

In the Minute band (and concentrating on just the

Open-Gate activity as similar augments apply to

Close-Gate) we have for rely-Open-Gate1:

direction = UP∧motor = RUNNING ❀2 gate = OPEN

⊡(motor = STOPPED) ⇒ gate ′ = gate

⊡(top ⇔ gate = OPEN)

If the first condition does not hold, the motor fails to open

the gate in the time expected. This could be due to the

motor being broken, power not being supplied or the gate

being jammed. It is impossible for the control software to

13Private verbal communication.

distinguish between these causes. Although the specification

of the MGS in the Minute band guarantees to open the gate

in one minute, the rely condition for the Open-Gate activity

allows two minutes. An even weaker rely could therefore be

defined:

direction = UP∧motor = RUNNING ❀3 gate = OPEN

With this weaker rely condition there is now a two minute

gap between what the MGS guarantees and the software

requires. This could allow extra functionality to be added

to the software, for example to attempt to remove possible

jamming by moving the gate down and up again (this would

perhaps be more useful within Close-Gate where jamming

is more likely). Any extra functionality would of course

require the specification to be modified. If the specification

is not so extended then after 3 minutes (the precision of the

Hour band in which the open-gate event is defined) then

there will be an open-gate-fail event in the Hour band (see

discussion below in Section 4.2).

The second clause of rely-Open-Gate1 embodies the

assumption that only the motor can move the gate. In

particular that an open gate will not (under the force of

gravity) slowly sink to the bottom and thereby reduce

the amount of irrigation water passing the sluice gate.

A response to this potential failure could be to check

periodically (in the Seconds band) that top remains true for

the entire time that the gate is open and the motor is stopped.

Again, this requirement whose role is to add to the resilience

of the CPS necessarily leads to an extended specification.

The final clause concerns the sensor. If this is

malfunctioning (which the control software cannot know)

then the controller cannot distinguish between motor failure

and sensor failure. If it is the sensor then the gate may be

open (at the top) but the control software has not turned off

the motor. This could lead to the motor burning out. To

prevent this eventuality two strategies can be adopted. First

the reliability of the sensor can be improved — perhaps by

replication; the use of hardware redundancy and replication

is covered in Section 4.4. Assuming that voting between

sensors is handled separately, this approach has no impact

on the specification of the software (including the rely

conditions). The second strategy is to introduce nested

rely/guarantee conditions. For example, the specification of

the software (in the Minute band) could be extended to say

that the motor never runs for more than 3 minutes in any 30

minutes. We now have a weaker rely condition (true) but a

guarantee that ensures that the motor does not burn out. Of

course with the defined system that only has sensors at the

top and bottom then the actual position of the gate when the

power is cut will be unknown. This needs to be reflected

in the Hour band when the open-gate-fail event occurs (see

discussion in Sect. 4.2).

This completes consideration of the Minute band. For

the Seconds band we have the following rely conditions; in

Set-Direction:

⊡(power = OFF) ∧motor = STOPPED ⇒
motor ′ = STOPPED

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

DERIVING SPECIFICATIONS OF CONTROL PROGRAMS FOR CYBER PHYSICAL SYSTEMS 13

and in Set-Power :

power = ON ❀1 motor = RUNNING

power = OFF ❀1 motor = STOPPED

The first clause only really requires the power supply to

the motor to be appropriately wired. In the absence of

any security issues then a high level of confidence can be

assigned to this assumption. Nevertheless it is important that

the rely condition has been explicitly stated.

The second set of clauses can again suffer from complete

functional failure or timing overrun. To check that the motor

is running (without the introduction of further sensors) could

be accomplished by monitoring the arrival time at the top (or

bottom). Again however, the failure of the gate to open (or

close) could be due to a number of reasons that the control

software cannot distinguish between. The failure to stop the

motor would need to be investigated at a level below the

Seconds band where the code for power management is to

be found – but this is beyond the scope of this study.

Note the clauses in rely-MGSm and rely-MGSs play a

different role: the control system is required to make sure

that these are not violated. Thus they become part of the

guarantee conditions for the control system.

A full treatment of the likelihood of different failure

modes requires use of a stochastic model which is beyond

the aims of the current paper but adding probabilities is

compatible with our framework.

4.2. Timing failures

As noted in the above discussion it is possible for an event

to fail. In particular any event (or collection of synchronous

events) that fails to occur within the precision of the band in

which they are defined with result in a ‘fail’ event. Indeed

for any event e there is an implicit event e-fail , with the post

condition of e-fail being weakened to true. At run-time the

environment will determine if e or e-fail occur. A system

is built on the assumption that each event will terminate

without failure; only in the consideration of fault tolerance

will the possibility of e-fail be investigated.

So event open-gate in the Hour band has an associated

event open-gate-fail . This event occurs when either the

Open-Gate activity in the Minute band fails to terminate

within 3 minutes (the precision of the Hour band), or the

activity itself signals failure. The occurrence of this failure

event could be specified to be actually generated by the

software running within the minute band; it could then cause

the control schedule to be abandoned, and perhaps a warning

signal/light/horn to be activated (in the Hour band).

A further consequence of a timing failure is when a finer-

band state, that does not correspond to any coarser-band

state, is occupied for longer than the precision of the band

within which the finer state is defined. So, for example, in

the Hour band the gate is either OPEN or CLOSED; but in

the Minute band it can also be in the state BETWEEN. The

timeband model requires that the longest time this state can

be occupied is 3 minutes (the precision of the Hour band)

per hour. But a failure (e.g. motor failure) can leave the gate

in the BETWEEN state indefinitely.

To cater for this failure behaviour the type of such state

variables in the coarser band is expanded with an undefined

value, ⊥, which is used to represent that the state is

undefined – this corresponds to it being any value in the

lower band (not just BETWEEN in the open-gate example).

To give a further example from the case study: in the

Minute band there are only two possible states for the motor,

RUNNING and STOPPED, but in the finer Seconds band

the phases of STARTING and STOPPING the motor are also

visible (see Figure 9). The variable SluiceGates .motor

being either STARTING or STOPPING for longer than the

precision ρm corresponds to SluiceGatem .motor = ⊥ in

the coarser band. The weaker post condition true holds for

any value of SluiceGatem .motor , including⊥. Because the

interpretation of ⊥ is that the value is undefined, it rarely

makes sense to explicitly use ⊥ in post conditions.

4.3. Applying the may/must notion to monitoring

There are cases where indirect inferences can be used to

indicate erroneous behaviour of the physical components.

This can then be used to monitor the run-time health of the

system. One such case is used here to illustrate both an

interesting timeband example and the may/must approach

which has quite general applicability.

It is an indirect consequence of a physical world

impossibility that the top and bottom sensors should never

both be on at the same time.

top ∧ bottom ⇔ gate = OPEN ∧ gate = CLOSED

⇔ false

The notion of “the same time” is however interesting. One

point is that a control program cannot read both sensors at

exactly the same point in time and hence it is impossible to

test this assertion. However, given that the sensors should

reflect the gate position that cannot change quickly, it would

be suspicious if both sensors were on even within a relatively

short period of time. What could be happening is some

sort of sensor flicker caused by a bad connection and such

phenomena might well be discussed at the millisecond time

band.

A control program should be allowed to raise an alert if

top and bottom are sensed in a short period of time and it

ought raise an alarm if both are sensed over a long period

of time. By placing the health monitor in some band with

precision ρ, the implication is that if top and bottom are both

on in an interval of duration greater than ρ it must identify

the fault; for an interval less than ρ it may.

The approach of may/must specification is useful in many

situations where it is necessary to allow non-determinism

but also to bound the degree of flexibility. As here, it is

particularly useful with time bands.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

14 A. BURNS, I. J. HAYES AND C. B. JONES (FEBRUARY 14, 2019 06:29)

Second band

⊥

STOPPEDmotor = RUNNING

motor = RUNNING STOPPED

STARTING STOPPING

Minute band

FIGURE 9. Mapping states between bands and handling undefined values

4.4. Using Hardware Redundancy

This section does not aim to offer new material; rather

it relates the proposed approach to established ideas.

Improving the resilience of the system can be handled by

incorporating more reliable sensors or multiple sensors, etc.

The final rely clause of Open-Gate1 is:

⊡(top ⇔ gate = OPEN)

This records an assumption about the relationship between

real world phenomena and the state of sensors. Such

assumptions are essential in reasoning that the combined

control/MGS systems will satisfy the overall requirement

which is expressed in terms of phenomena of the physical

world: insulating the control system from the physical

assumptions is key to the “HJJ” idea. Notice that a devious

MGS system could fail to move the gate but send timely

sensor signals to the control software and the latter would

continue to operate according to its specification. Clearly, in

this case, the whole system would not meet its specification

because its relies would not be satisfied. Also, if the

meanings of direction and top/bottom were simultaneously

reversed, it would appear to operate correctly but go up

instead of down and vice versa.

Leaving aside such malicious behaviour, there are

numerous physical failures that could result in the above

rely clause not being satisfied. The most obvious one is

probably that the sensor fails. The standard way to increase

dependability in such situations is to employ redundancy:

for a safety critical system, a designer might add an extra

sensor or even triple-modular redundant sensors. Such

expense is probably not appropriate for our sluice gate.

Multiple sensors failing is less likely than the gate being

jammed leading to the system being unable to determine

whether the gate is at the top or not. Of course, two sensors

could fail together due to a common mode failure (such

as both wires being severed at the same time because they

follow a similar path).

Another safety precaution might be to introduce a heat

sensor on the motor — this option is not pursued here.

Neither is the addition of a water flow monitor; this would be

a significant change to the specification and would introduce

further assumptions (about the reliability and fidelity of this

additional monitor).

5. RELATED WORK

Many other researchers address issues around CPS (and

some earlier research referred to as “hybrid systems” is

relevant); a particularly useful recent reference is [1]. This

section refers only to research that is most closely related

to our approach; for a wider survey see the reports of the

EU-funded CyPhERS14 action or the CPSoS project.15

Coping with time One major distinction of our approach

from everything else mentioned in this section is our use

of time bands as a way of obviating the need to specify

all time dependent values (often continuously varying) at

a single time granularity. The only other approach that

attempts to deal with different time granularities is that of

Corsetti [27, 28] (but they ultimately map everything down

to the lowest level).

Focus Broy and Stølen [29] introduce an approach to real-

time systems based on timed traces with specifications in the

form of assumptions (relies) and guarantees similar to those

used here but they do not make use of layering based on

timebands or implementing events as activities.

Hybrid automata The main abstraction mechanism used in

hybrid automata is the functional block that corresponds to

a component with a more abstract specification that is then

implemented by a network of components [30]. While the

partitioning into components has similarities to the approach

taken here, hybrid automata do not take advantage of

partitioning the system into time bands, instead, everything

is working within the one notion of time.

Duration Calculus The Duration Calculus [31] allows

specification of behaviour over time intervals and its

notations could be used to express some of the detailed

properties given in our example. It does not directly support

14Cyber-Physical European Roadmap & Strategy — see

http://www.cyphers.eu
15http://www.cpsos.eu/wp-content/uploads/2015/02/D2-4-State-of-the-

art-and-future-challenges-in-cyber-physical-systems-of-2.pdf

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

DERIVING SPECIFICATIONS OF CONTROL PROGRAMS FOR CYBER PHYSICAL SYSTEMS 15

splitting the specification over multiple time bands.

Domain engineering Dines Bjørner has championed “Do-

main Engineering” in a series of publications. This approach

(for example [32]) certainly places a laudable emphasis on

the importance of understanding the physical world with

which the computer system has to interact. It does, however,

prompt the modelling of that world where our approach tries

to minimise this by recording only the essential assumptions

about how that world behaves. To take the example of a sys-

tem for plotting possible positions over time of aircraft: we

would record rely conditions about the relationship of mes-

sages transmitted to the pilot and the expected rate of climb;

we would avoid discussing a model of the fluid dynamics

of air over wing surfaces etc. When considering the role

of human agents within a system, it becomes mandatory to

record (only) assumptions about their behaviour since mod-

elling human minds and physical capabilities is clearly un-

achievable.

Harel’s state charts David Harel’s hierarchical state charts

[33] would seem relevant. Within a state chart, a single

state can expand to include an internal state machine with

transitions between internal states. The main difference

in our approach is that, whereas Harel expands a single

state to a state machine, we refine the state transitions

to introduce more detailed behaviour to implement the

transition, including additional intermediate states. For

example, a start chart representing the sluice gate at the

hour band could be represented by two states OPEN and

CLOSED transitions between them in opposite directions

labeled with events open and closed , but while one can

decompose a state, e.g. OPEN, to give the internal behaviour

while the gate is open, there is no way to decompose the

open event into a more complex activity as we do using

the approach outlined in the paper. In summary, state charts

focus on decomposing states, while our approach focuses on

decomposing transitions.

Four variable model David Parnas and Jan Madey [34]

recognised –on the one hand– the distinction between

physical “monitored” values (m) and the “inputs” visible

via sensors (i) and –on the other hand– “output data

items” (o) and their effect on “controlled” values (c)

in the physical world. They distinguish three relations

NAT (m, c), IN (m, i) and OUT (o, c), which correspond

to the description of the physical world and its relationship

to the inputs and outputs of the control software, whereas

we group these into a single description of the physical

component (e.g. MGS) but explicitly distinguish between

the relies and guarantees of the physical component, and

partition the specifications into timebands to avoid the

complexity of a monolithic specification.

Event-B Jean-Raymond Abrial uses Event-B [11] by

starting off with a abstract representation and properties of

operations at that level. He then adds state and “refines”

operations to specify more of their behaviour. However, his

events are discrete and atomic and hence he cannot represent

rely and guarantee conditions on continuous variables.

Teleo-reactive programs Earlier work [35, 36, 37] ad-

dressed describing hybrid systems using Nilsson’s teleo-

reactive programming approach [38, 39]. It allowed differ-

ent components to be specified within different time bands,

which determined, for example, how the guards of a teleo-

reactive program are to be interpreted in a “sampling” logic

[40].

6. FURTHER WORK AND CONCLUSIONS

The starting point for deriving the specification of a control

system is taken to be a description of the desired behaviour

of the complete Cyber-Physical System (CPS) in its physical

environment. This paper illustrates the benefits that can be

gained by specifying behaviours at a number of different

time granularities.

The proposed approach is built upon the mapping of

events (with pre/post conditions) in one time band to

activities (with pre and post conditions plus rely and

guarantee conditions) in a time band with finer granularity.

A process based on refinement and HJJ is used to transpose

a specification that, usefully, refers to elements of the

physical world, to one that only accesses local state and

elements of the software/hardware interface. The result is

a complete specification of the required behaviour of the

software control component of the CPS.

Much of course remains to be done. In evolving

the presented material, other examples have already been

considered. Even a humble thermostat example shows both

the useful separation of the external objectives in terms of

real world phenomena from the detail of the control program

(it also illustrates the importance of recording assumptions

about the potential rate of change of external factors). More

substantial examples that have motivated our work include

the mine pump [41], vehicle cruise control (see [6, §3])

and the iFACTS air traffic system16. Rather than work on

these post facto, we would prefer to get involved with a new

application.

Related to this point, is that it is worth repeating that

the proposed combination of ideas is to be viewed as a

framework. Different industrial contexts will be committed

to using their own standard notations and it is not our

objective to offer a single notation that must be adopted to

use our framework.

This, of course, connects to the question of tool support.

There are efforts in both Queensland and Newcastle to

provide support in Isabelle for rely/guarantee reasoning [42,

43].

One of the aims of the approach is to increase the

resilience of CPS by allowing the assumptions on which

the control system is built to be challenged and, where

appropriate, weaker guarantees to be developed from weaker

assumptions (rely conditions). Future work will extend

16See https://www.bcs.org/upload/pdf/formal-methods-100113.pdf

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

16 A. BURNS, I. J. HAYES AND C. B. JONES (FEBRUARY 14, 2019 06:29)

this aspect of the framework by formalising how a CPS

executing in a degraded mode can return to full functionality.

ACKNOWLEDGEMENTS

The authors are grateful for useful comments from the

anonymous referees of an earlier draft of this material.

This research was supported by the UK EPSRC “Strata”

Platform Grant EP/N023641/1 and Australian Research

Council (ARC) Discovery Grant DP190102142.

REFERENCES

[1] Platzer, A. (2018) Logical Foundations of Cyber-Physical

Systems. Springer-Verlag.

[2] Jackson, M. (2000) Problem Frames: Analyzing and

structuring software development problems. Addison-Wesley.

[3] Hayes, I., Jackson, M., and Jones, C. (2003) Determining the

specification of a control system from that of its environment.

In Araki, K., Gnesi, S., and Mandrioli, D. (eds.), FME 2003:

Formal Methods, LNCS, 2805, pp. 154–169. Springer Verlag.

[4] Jones, C. B., Hayes, I. J., and Jackson, M. A. (2007) Deriving

specifications for systems that are connected to the physical

world. In Jones, C. B., Liu, Z., and Woodcock, J. (eds.),

Formal Methods and Hybrid Real-Time Systems, LNCS,

4700, pp. 364–390. Springer Verlag.

[5] Burns, A. and Hayes, I. (2010) A timeband framework for

modelling real-time systems. Real-Time Systems Journal, 45,

106–142.

[6] Romanovsky, A. and Thomas, M. (2013) Industrial deploy-

ment of system engineering methods. Springer.

[7] Davis, R., Bate, I., Bernat, G., Broster, I., Burns, A.,

Colin, A., Hutchesson, S., and Tracey, N. (2018) Transferring

Real-Time Systems Research into Industrial Practice: Four

Impact Case Studies. In Altmeyer, S. (ed.), 30th Euromicro

Conference on Real-Time Systems (ECRTS 2018), Dagstuhl,

Germany, Leibniz International Proceedings in Informatics

(LIPIcs), 106, pp. 7:1–7:24. Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik.

[8] Jones, C. B. (1990) Systematic Software Development using

VDM, second edition. Prentice Hall International.

[9] Hayes, I. (ed.) (1993) Specification Case Studies, second

edition. Prentice Hall International, Englewood Cliffs, N.J.,

USA.

[10] Abrial, J.-R. (1996) The B-Book: Assigning programs to

meanings. Cambridge University Press.

[11] Abrial, J.-R. (2010) The Event-B Book. Cambridge University

Press, Cambridge, UK.

[12] Jones, C. B. (1981) Development Methods for Computer

Programs including a Notion of Interference. PhD thesis

Oxford University. Printed as: Programming Research

Group, Technical Monograph 25.

[13] Jones, C. B. (1983) Specification and design of (parallel)

programs. Proceedings of IFIP’83, pp. 321–332. North-

Holland.

[14] Jones, C. B. (1996) Accommodating interference in the

formal design of concurrent object-based programs. Formal

Methods in System Design, 8, 105–122.

[15] Hayes, I. J., Jones, C. B., and Colvin, R. J. (2014) Laws and

semantics for rely-guarantee refinement. Technical Report

CS-TR-1425. Newcastle University.

[16] Jones, C. B., Hayes, I. J., and Colvin, R. J. (2015) Balancing

expressiveness in formal approaches to concurrency. Formal

Aspects of Computing, 27, 465–497.

[17] Hayes, I. J. and Jones, C. B. (2018) A guide to

rely/guarantee thinking. In Bowen, J., Liu, Z., and Zhan, Z.

(eds.), Engineering Trustworthy Software Systems – Second

International School, SETSS 2017 LNCS. Springer-Verlag.

[18] Morgan, C. C. (1994) Programming from Specifications,

second edition. Prentice Hall.

[19] Back, R.-J. R. and von Wright, J. (1998) Refinement Calculus:

A Systematic Introduction. Springer, New York.

[20] Hoare, C. A. R. (1969) An axiomatic basis for computer

programming. Communications of the ACM, 12, 576–580,

583.

[21] Wei, K., Woodcock, J., and Burns, A. (2012) Modelling

temporal behaviour in complex systems with timebands. In

Hinchey, M. and Coyle, L. (eds.), Conquering Complexity,

pp. 277–307. Spinger.

[22] Woodcock, J., Oliveira, M., Burns, A., and Wei, K.

(2010) Modelling and implementing complex systems with

timebands. Proc. IEEE Conference on Secure System

Integration and Reliability Improvement (SSIRI), pp. 1–13.

[23] Baxter, G., Burns, A., and Tan, K. (2007) Evaluating

timebands as a tool for structuring the design of socio-

technical systems. In Bust, P. (ed.), Contemporary

Ergonomics 2007, pp. 55–60. Taylor & Francis.

[24] Burns, A. and Baxter, G. (2006) Time bands in systems

structure. Structure for Dependability, pp. 74–90. Springer.

[25] Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr,

C. (2004) Basic concepts and taxonomy of dependable and

secure computing. IEEE Transactions on Dependable and

Secure Computing, 1, 11–33.

[26] SAE (1996). Guidelines and methods for conducting the

safety assessment process on civil airborne systems and

equipment, ARP 4761.

[27] Corsetti, E., Montanari, A., and Ratto, E. (1991) Dealing with

different time granularities in formal specifications of real-

time systems. Journal of Real-Time Systems, 3, 191–215.

[28] Ciapessoni, E., Corsetti, E., Montanari, A., and Pietro, P. S.

(1993) Embedding time granularity in a logical specification

language for synchronous real-time systems. Science of

Computer Programming, 20, 141–171.

[29] Broy, M. and Stølen, K. (2001) Specification and Develop-

ment of Interactive Systems. Springer-Verlag.

[30] Alur, R. (2015) Principles of Cyber-Physical Systems. MIT

Press, Cambridge, Massachusetts.

[31] Chaochen, Z. and Hansen, M. R. (2004) Duration Calculus.

Springer.

[32] Bjørner, D. (2006) Software Engineering 3: Domains,

Requirements, and Software Design. Springer.

[33] Harel, D. and Politi, M. (1998) Modeling Reactive Systems

with Statecharts: The STATEMATE Approach. McGraw-Hill.

[34] Parnas, D. L. and Madey, J. (1995) Functional documentation

for computer systems engineering. Sci. Comput. Program.,

25, 41–61.

[35] Dongol, B. and Hayes, I. J. (2012) Approximating idealised

real-time specifications using time bands. Automated Verifi-

cation of Critical Systems 2011, Electronic Communications

of the EASST, 46, pp. 1–16. EASST.

[36] Dongol, B. and Hayes, I. J. (2012) Rely/guarantee reasoning

for teleo-reactive programs over multiple time bands. In

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

DERIVING SPECIFICATIONS OF CONTROL PROGRAMS FOR CYBER PHYSICAL SYSTEMS 17

Derrick, J., Gnesi, S., Latella, D., and Treharne, H.

(eds.), Integrated Formal Methods, LNCS, 7321, pp. 39–53.

Springer.

[37] Dongol, B., Hayes, I. J., and Derrick, J. (2014) Deriving real-

time action systems with multiple time bands using algebraic

reasoning. Science of Computer Programming, 85 Part B,

137–165.

[38] Nilsson, N. (1994) Teleo-reactive programs for agent control.

Journal of Artificial Intelligence Research, 1, 139–158.

[39] Nilsson, N. (2001) Teleo-reactive programs and the triple-

tower architecture. Electronic Transactions on Artificial

Intelligence, 5, 99–110.

[40] Hayes, I. J., Burns, A., Dongol, B., and Jones, C. B. (2013)

Comparing degrees of non-deterministim in expression

evaluation. The Computer Journal, 56, 741–755.

[41] Mahony, B. P. and Hayes, I. J. (1992) A case-study in

timed refinement: A mine pump. IEEE Trans. on Software

Engineering, 18, 817–826.

[42] Hayes, I. J. (2016) Generalised rely-guarantee concurrency:

An algebraic foundation. Formal Aspects of Computing, 28,

1057–1078.

[43] Dias, D. M. (2017) Mechanising an algebraic rely-guarantee

refinement calculus. PhD thesis Newcastle University.

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

