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1. INTRODUCTION
We are about to embark on a project (AI4FM) that will
use Artificial Intelligence (AI) to tackle a core issue for GC6
(Dependable Systems Evolution).

Achieving verified software has been a dream since the birth
of computer science and the importance of this objective has
become ever greater with the increasing size and complex-
ity of software.1 Grand Challenge 6 (GC6), “Dependable
Systems Evolution”, addresses this by advocating the use of
formal methods for software development.2 The use of for-
mal methods has been successful in safety-critical domains,
like railway and aviation and is becoming increasingly pop-
ular in other sectors (e.g. Microsoft use formal methods to
verify device drivers). A recent paper by Woodcock et al.
[7] analyses a large number of recent industrial applications
of formal methods.

Formal methods are applied post facto (bottom-up) or in
correctness by construction (top-down). Top-down methods
tend to be “posit and prove” where a designer posits a step
of development and then seeks to justify it. Such justifica-
tions generate proof obligations (POs) — putative lemmas
that need proof. Typically, a large proportion of POs can
be discharged by automatic theorem provers, but there are
still some that require user interaction. Discharging these
POs can become a bottleneck in the use of formal methods
in practical applications. There are two approaches to deal-
ing with the POs that require user interaction:3 (1) Follow a
modelling strategy : change the model/abstraction to a strat-
egy that simplifies the proofs, thus increasing the proportion
of POs that are discharged automatically. (2) Follow a proof

1We use the term software although the discussion here is
valid for any application of formal methods, i.e. to generic
system modelling as well as software and hardware.
2‘Formal methods’ use mathematics to specify, develop and
reason about software and systems.
3Note that the modelling and proof strategies are not mutu-
ally exclusive. For example, the numbers quoted below most
likely apply after several iterations of the original model.
A proof strategy could still be applied after the modelling
strategy has reduced the numbers of undischarged POs.

strategy : accept the challenging POs and define a strategy
for discharging them.

It is the proof approach that we will take in our AI4FM
project. Our aim is to increase the repertoire of techniques
for the proof-strategy approach by learning from proof at-
tempts made by humans.

The POs arising from formal methods tend to have differ-
ent properties from “pure” mathematics. (1) There are of-
ten large numbers of detailed POs. To illustrate, the Paris
Metro Line 14 and the Roissy Airport shuttle system were
both developed using formal methods; the former generated
27, 800 POs (around 2, 250 interactive) while the latter gen-
erated 43, 610 POs (around 1, 150 interactive) [1]. (2) POs
tend to be less deep, thus less proof effort is required from
the user. (3) They are often “similar”, in the sense that they
can be grouped into “families” — and the same (high-level)
proof approach can be successfully applied to all members
of the family.

2. THE AI4FM APPROACH
In many cases where a (correct) PO is not discharged auto-
matically, an expert can easily see how to complete a proof.
By exploring the nature of the POs within formal meth-
ods we believe that a higher degree of automation can be
achieved by relying on expert intervention to do one proof,
if this would enable a prover to discharge the others in the
same family. Specifically, we hope to build a tool that will
learn enough from one proof attempt to improve the chances
of proving “similar” results automatically. By “proof at-
tempt” we include things like the steps explored by the user
(not just the chain of steps in the final proof). Thus it is
central to our goal that we find high-level strategies capable
of cutting down the search space in proofs. Our hypothesis
is:

we believe that it is possible (to devise a high-
level strategy language for proofs and) to extract
strategies from successful hand proofs that will fa-
cilitate automatic proofs of related POs.



To achieve our goal we plan to use many dimensions to
analyse the exemplar proof and the POs, e.g. by separating
information about data structures and approaches to dif-
ferent patterns of POs. A proof (attempt) might be seen
to use “generalise induction hypothesis” (e.g. adding an ar-
gument to accumulate values) in a specific proof about, say,
sequences; a future use of the same PO might involve a more
complicated tree data structure — but if it has an induction
rule, the same strategy might work. We would also expect
to discover other dimensions, such as the domain of the PO
(e.g. does it relate to trains or to railway tracks?).

Designing a strategy language capable of capturing such
properties (in an abstract form) is key to the success of
AI4FM. Evidence for the possibility of such strategy lan-
guage is rippling [2] – its generality can be illustrated by
the domains to which it has been applied, e.g. verification
of functional, logical and imperative programs; synthesis of
theorems, programs and witnesses; correction of faulty spec-
ifications and hardware verification. We believe that several
items from rippling will play a major part in the design of
our strategy language:

• Some “standard” proof plans and known devia-
tions from and patches to them. [2] uses rippling
to describe a“standard”proof plan for inductive proofs
and shows how each different pattern of failure in rip-
pling suggests a different way of patching a failed proof
attempt. We hypothesise that expert-provided proofs
of undischarged POs will typically exhibit either a new
proof plan or a new patch to an existing plan.

• Choices of unusual induction rules and vari-
ables, choices of loop invariants. Choosing an
alternative non-standard induction rule is one of the
patches to the standard induction proof plan which is
described in [2]; patching a failed loop invariant is the
patch described in [6].

• Choices of intermediate lemmas. Designing, con-
structing and proving a key intermediate lemma is an-
other of the patches to the standard induction proof
plan described in [2].

• Generalisation of the PO. [2] also describes ways
of generalising the PO or the current goal to patch a
failed proof.

3. CONCLUSION
AI4FM addresses proof automation for formal methods which
is a bottleneck for their (industrial) application. The target
of the project is to increase the overall proof automation
within formal methods, thus increasing their applicability.
Hence, it relates to any grand challenge where formal meth-
ods are, or can be,4 applied. Thus, it is within the scope
of the existing computing Grand Challenge 6: “Dependable
Systems Evolution”.

4Although formal methods have mainly been applied to
safety-critical domains, it has been argued that they are in
fact cheaper than conventional software development tech-
niques. The argument is that bugs are detected earlier, thus
reducing (much of) the need for testing and reworking.

Of the proposed societal grand challenges, reliable software
is at least crucial for security. Moreover, the formality and
mathematical rigour of formal methods could have a role
to play when modelling and developing systems to support
assisted living and health.5

Finally, note that the motivation for AI4FM has come from
actual industrial needs (in particular from industrial part-
ners of the EU-funded Deploy project6). Our longer term
hope is that it can help to stimulate other AI ideas for formal
methods. An example of this is [5], where AI is used to sug-
gest changes to formal models from proof failures. For more
details about the AI4FM project, please see www.ai4fm.org

and [3, 4].
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