4,292 research outputs found
Characterization of Mauritius parakeet (Psittacula eques) microsatellite loci and their cross-utility in other parrots (Psittacidae, Aves).
We characterized 21 polymorphic microsatellite loci in the endangered Mauritius parakeet (Psittacula eques). Loci were isolated from a Mauritius parakeet genomic library that had been enriched separately for eight different repeat motifs. Loci were characterized in up to 43 putatively unrelated Mauritius parakeets from a single population inhabiting the Black River Gorges National Park, Mauritius. Each locus displayed between three and nine alleles, with the observed heterozygosity ranging between 0.39 and 0.96. All loci were tested in 10 other parrot species. Despite testing few individuals, between seven and 21 loci were polymorphic in each of seven species tested
Measuring rainfall from above and below the sea surface
Satellites play a major role in the determination of the rainfall at sea. Researchers at Southampton Oceanography Centre (SOC) have been involved in two projects addressing this task. First they have been instrumental in developing techniques to retrieve rain rate information from the 10+ years of dual-frequency altimeter data. The TOPEX radar measures rainfall via the attenuation it causes, producing a climatology that is independent of those derived from passive microwave (PM) and infrared (IR) sensors. Because TOPEX is an active microwave sensor, it can have a much smaller footprint than PM sensors. Therefore it can be used to estimate the size of rain cells, showing that the ITCZ and mid-latitude storm tracks are characterized by larger rain systems than elsewhere. TOPEX’s simultaneous recording of wind and wave data reveal that, for mid-latitude systems, rain is most likely in association with developing seas.All satellite-based datasets require validation, and SOC's work on the development and testing of acoustic rain gauges is the second aspect of this paper. By listening at a range of frequencies, an underwater hydrophone may distinguish the spectra of wind, rain, shipping etc., and estimate the wind speed or rain rate according to the magnitude of the signals. All our campaigns have shown a good acoustic response to changes in wind speed. However the quantitative inversion for recent trials has given values that are too high, possibly because of significant acoustic reflection from the sea bottom. The changes in spectral slope often agree with other observations of rain, although validation experiments in coastal regions are hampered by the extraneous sources present. Acoustic rain gauges would eventually see service not only for routine satellite validation, but also for real-time monitoring of locations of interest
Phylogenetic relationships of the Wolbachia of nematodes and arthropods
Wolbachia are well known as bacterial symbionts of arthropods, where they are reproductive parasites, but have also been described from nematode hosts, where the symbiotic interaction has features of mutualism. The majority of arthropod Wolbachia belong to clades A and B, while nematode Wolbachia mostly belong to clades C and D, but these relationships have been based on analysis of a small number of genes. To investigate the evolution and relationships of Wolbachia symbionts we have sequenced over 70 kb of the genome of wOvo, a Wolbachia from the human-parasitic nematode Onchocerca volvulus, and compared the genes identified to orthologues in other sequenced Wolbachia genomes. In comparisons of conserved local synteny, we find that wBm, from the nematode Brugia malayi, and wMel, from Drosophila melanogaster, are more similar to each other than either is to wOvo. Phylogenetic analysis of the protein-coding and ribosomal RNA genes on the sequenced fragments supports reciprocal monophyly of nematode and arthropod Wolbachia. The nematode Wolbachia did not arise from within the A clade of arthropod Wolbachia, and the root of the Wolbachia clade lies between the nematode and arthropod symbionts. Using the wOvo sequence, we identified a lateral transfer event whereby segments of the Wolbachia genome were inserted into the Onchocerca nuclear genome. This event predated the separation of the human parasite O. volvulus from its cattle-parasitic sister species, O. ochengi. The long association between filarial nematodes and Wolbachia symbionts may permit more frequent genetic exchange between their genomes
Current and Future Treatment of Mucopolysaccharidosis (MPS) Type II: Is Brain-Targeted Stem Cell Gene Therapy the Solution for This Devastating Disorder?
Mucopolysaccharidosis type II (Hunter Syndrome) is a rare, x-linked recessive, progressive, multi-system, lysosomal storage disease caused by the deficiency of iduronate-2-sulfatase (IDS), which leads to the pathological storage of glycosaminoglycans in nearly all cell types, tissues and organs. The condition is clinically heterogeneous, and most patients present with a progressive, multi-system disease in their early years. This article outlines the pathology of the disorder and current treatment strategies, including a detailed review of haematopoietic stem cell transplant outcomes for MPSII. We then discuss haematopoietic stem cell gene therapy and how this can be employed for treatment of the disorder. We consider how preclinical innovations, including novel brain-targeted techniques, can be incorporated into stem cell gene therapy approaches to mitigate the neuropathological consequences of the condition
Dense circum-nuclear molecular gas in starburst galaxies
We present results from a study of the dense circum-nuclear molecular gas of
starburst galaxies. The study aims to investigate the interplay between
starbursts, active galactic nuclei and molecular gas. We characterise the dense
gas traced by HCN, HCO and HNC and examine its kinematics in the
circum-nuclear regions of nine starburst galaxies observed with the Australia
Telescope Compact Array. We detect HCN (10) and HCO (10) in seven
of the nine galaxies and HNC (10) in four. Approximately 7 arcsec resolution
maps of the circum-nuclear molecular gas are presented. The velocity integrated
intensity ratios, HCO (10)/HCN (10) and HNC (10)/HCN (10),
are calculated. Using these integrated intensity ratios and spatial intensity
ratio maps we identify photon dominated regions (PDRs) in NGC 1097, NGC 1365
and NGC 1808. We find no galaxy which shows the PDR signature in only one part
of the observed nuclear region. We also observe unusually strong HNC emission
in NGC 5236, but it is not strong enough to be consistent with X-ray dominated
region (XDR) chemistry. Rotation curves are derived for five of the galaxies
and dynamical mass estimates of the inner regions of three of the galaxies are
made.Comment: Accepted for publication in MNRAS, 22 December 2015. Main manuscript
is 13 pages, containing 3 figures. Also has 4 appendices of 13 pages total
containing numerous figures and details of calculation
Novel methods for spatial prediction of soil functions within landscapes (SP0531)
Previous studies showed that soil patterns could be predicted in agriculturally managed landscapes by modelling and extrapolating from extensive existing but related integrated datasets. Based on these results we proposed to develop and apply predictive models of the relationships between environmental data and known soil patterns to predict capacity for key soil functions within diverse
landscapes for which there is little detailed underpinning soil information available.
Objectives were:
To develop a high-level framework in which the non-specialist user-community could explore questions.
To generate digital soil maps for three selected catchments at a target resolution of 1:50000 to provide the base information for soil function prediction.
To use a modelling approach to predict the performance of key soil functions in catchments undergoing change but where only sparse or low resolution soil survey data are available.
To use a modelling approach to assess the impact of different management scenarios and/or environmental conditions on the delivery of multiple soil functions within a catchment.
To create a detailed outline of the requirements for ground-truthing to test the predicted model outputs at a catchment scale.
To contribute to the development of a high-level framework for decision makers
Excavations at cathole cave, Gower, Swansea
The discovery of an engraving in Cathole Cave in 2010 led to a decision to grille the cave. In 2012 excavations took place in the cave ahead of the grilling. Two areas of the cave were excavated; Trench A demonstrating that the cave held a faunal occupation dating to MIS 3, at a time, or times, between 50,000 and 30,000 BP. Two flint blades of Upper Palaeolithic appearance were discovered along with a faunal assemblage from within the shallow deposits across the line of the grille. The work demonstrated that the earlier excavations in the cave by Col. E.R. Wood were extensive and at this point in the cave he excavated to bedrock. The standing section (Trench B) which he left exposed further along the main cave passage was also cleaned, recorded and sampled. The deposits contain a faunal assemblage dominated by microfauna, but no cultural artefacts were found. The dating of key animal bones, the analysis of the microfauna and the sedimentological analysis have together enabled a picture to be developed of the changes in this section from the mid-Devensian to Late Glacial and Holocene
Neural tube derived Wnt signals cooperate with FGF signaling in the formation and differentiation of the trigeminal placodes
BACKGROUND: Neurogenic placodes are focal thickenings of the embryonic ectoderm that form in the vertebrate head. It is within these structures that the precursors of the majority of the sensory neurons of the cranial ganglia are specified. The trigeminal placodes, the ophthalmic and maxillomandibular, form close to the midbrain-hindbrain boundary and many lines of evidence have shown that signals emanating from this level of the neuraxis are important for the development of the ophthalmic placode. RESULTS: Here, we provide the first evidence that both the ophthalmic and maxillomandibular placodes form under the influence of isthmic Wnt and FGF signals. Activated Wnt signals direct development of the Pax3 expressing ophthalmic placodal field and induce premature differentiation of both the ophthalmic and the maxillomandibular placodes. Similarly, overexpression of Fgf8 directs premature differentiation of the trigeminal placodes. Wnt signals require FGF receptor activity to initiate Pax3 expression and, subsequently, the expression of neural markers, such as Brn3a, within the cranial ectoderm. Furthermore, fibroblast growth factor signaling via the mitogen activated protein kinase pathway is required to maintain early neuronal differentiation within the trigeminal placodes. CONCLUSION: We demonstrate the identity of inductive signals that are necessary for trigeminal ganglion formation. This is the first report that describes how isthmic derived Wnt signals act in concert with fibroblast growth factor signaling. Together, both are necessary and sufficient for the establishment and differentiation of the ophthalmic and maxillomandibular placodes and, consequently, the trigeminal ganglion
The genome sequence and effector complement of the flax rust pathogen Melampsora lini
Rust fungi cause serious yield reductions on crops, including wheat, barley, soybean, coffee, and represent real threats to global food security. Of these fungi, the flax rust pathogen Melampsora lini has been developed most extensively over the past 80 years as a model to understand the molecular mechanisms that underpin pathogenesis. During infection, M. lini secretes virulence effectors to promote disease. The number of these effectors, their function and their degree of conservation across rust fungal species is unknown. To assess this, we sequenced and assembled de novo the genome of M. lini isolate CH5 into 21,130 scaffolds spanning 189 Mbp (scaffold N50 of 31 kbp). Global analysis of the DNA sequence revealed that repetitive elements, primarily retrotransposons, make up at least 45% of the genome. Using ab initio predictions, transcriptome data and homology searches, we identified 16,271 putative protein-coding genes. An analysis pipeline was then implemented to predict the effector complement of M. lini and compare it to that of the poplar rust, wheat stem rust and wheat stripe rust pathogens to identify conserved and species-specific effector candidates. Previous knowledge of four cloned M. lini avirulence effector proteins and two basidiomycete effectors was used to optimize parameters of the effector prediction pipeline. Markov clustering based on sequence similarity was performed to group effector candidates from all four rust pathogens. Clusters containing at least one member from M. lini were further analyzed and prioritized based on features including expression in isolated haustoria and infected leaf tissue and conservation across rust species. Herein, we describe 200 of 940 clusters that ranked highest on our priority list, representing 725 flax rust candidate effectors. Our findings on this important model rust species provide insight into how effectors of rust fungi are conserved across species and how they may act to promote infection on their hosts.This work
was funded by a grant from the CSIRO Transformational Biology
Capability Platform to Adnane Nemri. Claire Anderson was supported
by an ARC Discovery Grant (DP120104044) awarded to
David A. Jones and Peter N. Dodds
Approximate Quantum Cloning with Nuclear Magnetic Resonance
Here we describe a Nuclear Magnetic Resonance (NMR) experiment that uses a
three qubit NMR device to implement the one to two approximate quantum cloning
network of Buzek et al.Comment: 4 pages RevTeX4 including 5 postscript figures. Submitted to PR
- …