32 research outputs found

    Cross species transmission of ovine Johnes Disease - Phase 1 : National Ovine Johne’s Disease Control and Evaluation Program.

    Get PDF
    Johne’s disease was investigated in fibre goats on several farms. The disease was caused by sheep [S] strains of Mycobacterium avium subsp. paratuberculosis. The infection appeared to be less severe than the same infection in sheep in that fewer goats than sheep became infected, and fewer goats than sheep developed obvious signs of the infection. However, infected goats shed the organism in their faeces and therefore were able to spread the infection to other goats and sheep. Therefore inclusion of goats in the control program for ovine Johne’s disease is justified. A communication program is recommended to advise producers that ovine Johne’s disease in goats may not be obvious and that testing should be undertaken to ensure disease is not present. The impact of ovine Johne’s disease on the fibre goat industry is projected not to be great due to the small number of herds likely to be infected

    New developments in the molecular treatment of ichthyosis:review of the literature

    No full text
    Ichthyosis covers a wide spectrum of diseases affecting the cornification of the skin. In recent years, new advances in understanding the pathophysiology of ichthyosis have been made. This knowledge, combined with constant development of pathogenesis-based therapies, such as protein replacement therapy and gene therapy, are rather promising for patients with inherited skin diseases. Several ongoing trials are investigating the potency of these new approaches and various studies have already been published. Furthermore, a lot of case series report that biological therapeutics are effective treatment options, mainly for Netherton syndrome and autosomal recessive congenital ichthyosis. It is expected that some of these new therapies will prove their efficacy and will be incorporated in the treatment of ichthyosis

    The distribution of murine 115-kDa epithelial microtubule-associated protein (E-MAP-115) during embryogenesis and in adult organs suggests a role in epithelial polarization and differentiation

    No full text
    In interphase cells microtubules play fundamental roles in the intracellular distribution and movement of organelles and vesicles and thereby contribute to cellular polarization and differentiation. The organization of microtubules varies with the cell type and is presumably controlled by tissue-specific microtubule-associated proteins (MAPs). The 115-kDa epithelial MAP (E-MAP-115) has been identified as a microtubule-stabilizing protein predominantly expressed in cell lines of epithelial origin. To assess a putative function of E-MAP-115 in epithelial morphogenesis in vivo, we have cloned the cDNA encoding the murine protein and studied the cellular distribution of E-MAP-115 mRNA and protein during murine embryogenesis and in adult organs. Analysis of the predicted amino acid sequence of murine E-MAP-115 revealed 81% sequence identity with its human homolog, the best-conserved part of the protein being the microtubule-binding site. Our data indicate that E-MAP-115 is expressed in several epithelia from 9.5 days of embryogenesis onwards and that its expression levels increase during development. From 14.5 days onwards, E-MAP-115 mRNA is found in some neuronal cells as well. In adult organs, E-MAP-115 is most abundant in epithelial cells of kidney tubules, in absorptive cells of the intestine and is widely distributed in the testis. E-MAP-115 expression correlates with the differentiation of certain epithelial cell types: in the adult intestine, for example, E-MAP-115 mRNA and protein are more abundant in the differentiating than in the proliferative cell compartment. Moreover, E-MAP-115 expression clearly correlates with the degree of cellular apicobasal polarity. In the developing kidney, E-MAP-115 mRNA is detected in the cuboidal cells of S-shaped bodies, of primitive tubules and glomerula, whereas, E-MAP-115 mRNA and protein are absent from mature podocytes which have lost their initial apico-basal polarity. The pattern of distribution of E-MAP-115 in vivo is so far unique for a MAP. Taken together, our results provide support for a role of E-MAP-115 in reorganizing the microtubule cytoskeleton during epithelial cell polarization and differentiation
    corecore