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Epidermal barrier disorders and corneodesmosome defects
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Abstract Corneodesmosomes are modified desmosomes
present in the stratum corneum (SC). They are crucial for
SC cohesion and, thus, constitute one of the pivotal elements
of the functional protective barrier of human skin. Expression
of corneodesmosomes and, notably, the process of their deg-
radation are probably altered during several dermatoses lead-
ing to the disruption of the permeability barrier or to abnormal,
often compensative, SC accumulation. These different situa-
tions are reviewed in the present paper.
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Introduction

The final product of epidermal differentiation, the stratum
corneum (SC), constitutes a barrier that efficiently separates
the body’s internal milieu from the terrestrial environment. It
is composed of 10–20 layers of dead cornified cells embedded
in a highly hydrophobic extracellular matrix. Quasi equimolar
proportions of three lipid families, i.e., ceramides, cholesterol
and free fatty acids, are necessary for the adequate molecular
organization of extracellular spaces and the resulting relative
impermeability to water and other substances (Bouwstra et al.
2003; Feingold and Elias 2014). The physical barrier of SC is
highly interactive in terms of its constant response to changing
environmental conditions and insults. Such a rapid adaptation
is possible because of perpetual epidermal renewal accompa-
nied by relatively rapid SC recycling, with a turnover time of
approximately two weeks (Hoath and Leahy 2003; Elias and
Choi 2005; Haftek 2014). A secondary barrier composed of

epidermal tight junctions is located in the stratum granulosum
and appears to play an important role in SC formation, notably
in the case of the acute abrogation of the principal SC fence
(Abdayem et al. 2014; for a review, see the following paper by
J.M. Brandner [2015]).

Although SC barrier function depends greatly upon its
biochemical composition, no effective barrier would exist
without the appropriate tissue structure. The flattened
cornified keratinocytes, namely the corneocytes, are delineat-
ed by highly insoluble cornified envelopes together with
equally cross-linked lipid envelopes. The latter are constituted
by a monolayer of ceramides that replace plasma membranes
of the living cells. Lipid envelopes constitute the scaffold for
the molecular arrangement of extracellular lipids to form
stacked bilayer sheets in inter-corneocyte spaces. This layered
lipid structure is essential for providing an adequate degree of
waterproofing and the SC permeability barrier (van Smeden
et al. 2014). Corneocytes remain connected via cell-cell junc-
tions persisting in the SC and their desquamation at the top of
the skin depends on the gradual degradation of these cell
attachments (Haftek et al. 2011; Haftek 2014; Ishida-
Yamamoto and Igawa 2014; for a review, see the previous
paper by A. Ishida-Yamamoto [2015]).

The principal “mechanical” junctions of the SC, namely the
corneodesmosomes, are modified desmosomes from the up-
permost nucleated epidermal layers. They retain the molecular
composition of the stratum granulosum junctions, notably
desmosomal cadherins characteristic of differentiated
keratinocytes, i.e., desmoglein 1 and desmocollin 1 but are
immobilized at the cell periphery through an extensive enzy-
matic cross-linking mediated by transglutaminases 1, 3 and 5
(Haftek et al. 1991; Hitomi 2005). Shortly before cornifica-
tion, the keratinocytes of the granular layer synthesize and
excrete into the extracellular spaces a new glycoprotein,
namely corneodesmosin, which spontaneously embeds within
the intercellular portions of the stratum granulosum desmo-
somes occupied by cadherins (Serre et al. 1991; Haftek et al.
1997). Corneodesmosin reinforces the junctions and must be
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degraded by proteases, together with the desmosomal
cadherins, to permit desquamation (Simon et al. 2001a; Jonca
et al. 2002). A complex interplay of serine proteases
(kallikreins) and cysteine proteases (cathepsins) with their
respective inhibitors (all excreted through the same vesiculo-
tubular system of lamellar granules as the intercellular lipids)
is orchestrated by the modifications of SC pH and hydration to
result in the progressive digestion of the corneodesmosomes
(Haftek et al. 1998; Denda et al. 1998; Hachem et al. 2003;
Caubet et al. 2004; Rawlings and Voegeli 2013; Fig. 1).
During this degradation process, first the junctions from be-
tween the consecutive layers of corneocytes disappear, leav-
ing intact the lateral cell-cell attachments. This results in the
subdivision of the SC into a highly cohesive part, the SC
compactum, with corneodesmosomes all around the cells
and the SC disjunctum, with side-to-side cell connexions only.
Once again, the peculiar spatial regulation of this desquama-
tion process might be dependent on structural features: in this
case, the persistence of strategically located fusions between
the adjacent cornified cell envelopes, i.e., cross-linked rem-
nants of tight junctions (Haftek et al. 2011; Igawa et al. 2011).
Functional consequences of this situation can be measured
based on the energy necessary for intercellular SC delamina-
tion. Indeed, such energy values diminish together with the
lowering of corneodesmosome density from the deeper parts
of the SC towards the surface (Wu et al. 2006). Kallikrein-7-
induced corneodesmosome degradation largely contributes to

this process (Levi et al. 2008). The balance between the SC
formation and desquamation impacts in an evident way on SC
thickness and its barrier function. In many cases, reactive
hyperkeratosis reflects a “routine” compensatory response of
the epidermis to functional or physical barrier disruption.

Inherited forms of corneodesmosome dysfunction
and their impact on the SC barrier

Primary defects of corneodesmosomes

Homozygous nonsense mutations in the corneodesmosin
(CDSN) gene leading to the complete absence of the encoded
protein or to residual expression of small non-functional frag-
ments result in peeling skin disease (PSD), a generalized form
of peeling skin syndrome, classified as inflammatory form B
(MIM270300; Oji et al. 2010; Israeli et al. 2011; Mazereeuw-
Hautier et al. 2011; Mallet et al. 2013). In this pathology, the
extracellular portions of the corneodesmosomes prove less
resistant tomechanical stress and are easily cleaved, especially
at the bottom of the SC, at the interface with the granular layer.
This mechanical separation of the entire sheet of full thickness
SC leaves largely denuded areas with practically no barrier at
all. Rupture of the permeability barrier results, in turn, in
cytokine production by keratinocytes (Wood et al. 1992) and
in an inflammatory reaction typical of this clinical form. A
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Fig. 1 Interplay of proteolytic
enzymes with their inhibitors
taking place in human epidermis.
Intercellular proteins of
corneodesmosome are substrates
for serine proteases kallikreins
(KLK), elastase 2 (ELA2) and
cysteine proteases cathepsins.
Plasma-membrane-attached
serine proteases of matriptase/
MT-SP1/CAP3—prostasin/
CAP1/PRSS8 cascade can cross-
activate and act through the
protease activated receptor 2 on
filaggrin and occludin processing,
the thymic stromal lymphopoietin
(TSLP)–mediated adaptive
inflammatory response and
epithelial sodium channel (ENaC)
activation. Enzyme activities are
tempered by several specific
inhibitors. All these interactions
are crucial for the maintenance of
epidermal homeostasis and
stratum corneum barrier function
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rescue response of the uppermost viable epidermal layers
aimed at the re-establishment of the SC barrier is also induced.
Most probably, it comprises lamellar granule/lipid release, as
suggested by the mouse experiments of the Elias group
(Menon et al. 1992) and the up-regulation of the tight junction
structures, as documented by a significant increase in the tight
junction remnants persisting in the SC of PSD (Haftek et al.
2012). In contrast, specific dominant CDSN mutations are
associated with autosomal dominant hypotrichosis simplex
(MIM146520; Levy-Nissenbaum et al. 2003). In this disease,
the truncated mutant corneodesmosin has been found to exert
a toxic effect on hair follicles through the formation of amy-
loid deposits (Caubet et al. 2010).

PSD must be differentiated from another generalized but
non-inflammatory form A, the etiology of which has been
recently linked to a mutation inCHST8 gene encoding a Golgi
sulfotransferase (Cabral et al. 2012) and from the acral form of
peeling skin syndrome. Indeed, the latter constitutes another
heterogeneous group of dermatoses (Krunic et al. 2013) with
its major variant being caused by mutations in TGM5,
encoding transglutaminase 5 (MIM609796; Cassidy et al.
2005; Szczecinska et al. 2014).

Homozygous bi-allelic mutations of the desmoglein 1 gene
(DSG1) observed in rare consanguineous families also impact
corneodesmosome function. They result in severe dermatitis,
multiple allergies and metabolic wasting syndrome (MIM
615508; Samuelov et al. 2013), although cases without met-
abolic wasting have also been observed (Has et al. 2014).
Although the main structural changes, such as irregular des-
mosome distribution, hypergranulosis with focal absence of
the granular layer and widespread acantholysis within the
stratum spinosum and granulosum, result in subcorneal and
intragranular separation, a modified SC is also observed
showing mixed ortho- and parakeratosis. Corneodesmosome
distribution also remains uneven and the disorder is charac-
terized by compromised barrier function, which may expose
the immune system to abnormal stimulation and lead to mul-
tiple allergies.

As can be logically predicted, analogical SC defects in-
volving the other desmosomal cadherin engaged in the pro-
cess of SC cohesion, desmocollin 1, will also be discovered
with time.

Protease and protease inhibitor dysfunctions

The protease-antiprotease system efficiently regulates the nor-
mal process of SC formation and desquamation (Egelrud
2000; Rawlings and Voegeli 2013). Observation of several
pathological states in man and in rodents has helped partially
to unravel these complex interactions. However, whether a
common pathway and a coordinated regulation of their activ-
ity are involved in the terminal differentiation of epidermal
keratinocytes remains unclear.

Netherton syndrome is an autosomal recessive
genodermatosis (MIM 256500) characterized by congenital
ichthyosiform erythroderma, invaginated distal hair shafts and
atopic disease. It is caused by mutations in the SPINK5 gene
encoding LEKTI 1, a serine protease inhibitor (Hovnanian
2013). Specific and measured neutralization of kallikreins 5, 7
and 14 by LEKTI is necessary for the limitation of
corneodesmosome degradation and hence, in Netherton syn-
drome, premature desquamation occurs associated with in-
flammatory reaction and severe barrier impairment leading
to multiple allergies (Deraison et al. 2007).

An inverse pathomechanism takes place in recessive X-
linked ichthyosis (XLI, MIM 308100) in which deletions in
the steroid sulfatase (STS) gene result in insufficiency of the
enzyme and SC retention (Elias et al. 2004). Steroid sulfatase
is necessary for the conversion of cholesterol sulfate to cho-
lesterol, a fundamental building brick of the intercellular lipid
lamellae of SC. In XLI, reduction in the cholesterol molecules
within the horny layer and the accumulation of cholesterol
sulfate provoke disequilibrium in the extracellular lipid spe-
cies leading to phase separation and suboptimal barrier func-
tion. Moreover, the accumulation of cholesterol sulfate sub-
strate (up to 20-fold that of normal values) has been revealed
to be a potent inhibitor of SC kallikreins in vitro (Sato et al.
1998) and is thus able significantly to slow down
corneodesmosome degradation. Other mechanisms leading
to corneodesmosome retention in XLI include (1) low SC
pH, out of the neutral to basic operating optima of kallikreins
(Ohman and Vahlquist 1998) and (2) the increased presence of
Ca2+ in the intercellular domains of the lower part of
ichthyotic SC possibly contributing to the stabilization of
corneodesmosome attachments (Elias et al. 2004).

Autosomal recessive ichthyosis with hypotrichosis (ARIH,
OMIM 610765), an inherited disorder linked to mutations in
the ST14 gene coding for a serine protease matriptase, is
characterized by the absence of the proteolytic activity of this
type II transmembrane enzyme (Chen et al. 2014). Histolog-
ically, impaired corneodesmosome degradation, acanthosis
and SC accumulation can be observed (Basel-Vanagaite
et al. 2007). Another inherited disease linked to various kinds
of mutation of the matriptase gene and resulting in the total
loss of the expression of the protein is IFAH (ichthyosis,
follicular atrophoderma, hypotrichosis and hypohidrosis;
OMIM 602400; Chen et al. 2014). The SC barrier defect
observed in this latter affliction has been associated with the
impaired processing of profilaggrin (Alef et al. 2009). Clinical
differences in phenotype between ARIH and IFAH can pos-
sibly be explained by the presence of modified matriptase
fragments in the former, in the light of evidence that reciprocal
cross-activation of zymogen forms ofmatriptase and its down-
stream partner prostasin/PRSS8/CAP-1 occurs and is inde-
pendent of the activation state of the enzymes (Friis et al.
2013). Although the epidermal distribution of human and
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rodent matriptase diverges significantly (Chen et al. 2014), we
should note that reduced filaggrin formation from its
profilaggrin precursor has also been reported in matriptase
knockout (KO) mice, additionally impacting SC lipid matrix
formation and cornified envelope morphogenesis (List et al.
2003). Together, these observations point to a role of the
matriptase-activated cascade spanning from keratinocyte pro-
liferation, through their terminal differentiation, to
desquamation.

Interestingly, impaired filaggrin processing has been re-
ported in mice models mimicking the human autosomal re-
cessive congenital ichthyosis group of diseases (ARCI; Jobard
et al. 2002) through an altered function of arachidonic acid
converting enzymes such as 12R-lipoxygenase (Epp et al.
2007). Because such enzymes have no obvious roles in the
processing of profilaggrin, defects in the epidermal differen-
tiation processes, even at early stages of differentiation, could
affect downstream filaggrin processing.

Impact of filaggrin mutations and changes attributable
to abnormal epidermal differentiation

Ichthyosis vulgaris (MIM 146700) and atopic dermatitis
(ATOD2; MIM 605803) can be associated with loss-of-
function mutations in the filaggrin gene (FLG; Smith et al.
2006; Palmer et al. 2006; Weidinger et al. 2006). As discussed
previously, no straightforward explanation has been proposed
for the pathological mechanism involved in which low
filaggrin results in impaired barrier function. Nevertheless,
recent experimental data suggest the existence of a feedback
mechanism involving the N-terminal fragment of filaggrin,
which would thus be responsible for controlling epidermal
homeostasis (Aho et al. 2012). Free amino acids originating
from filaggrin degradation are the main contributors to the
NMF (natural moisturizing factor) of the SC. Therefore, the
absence or largely reduced presence of filaggrin should impact
NMF quantities and, consequently, SC hydration (Dapic et al.
2013). Because filaggrin is also incorporated into cornified
envelopes (Simon et al. 1996), one can hypothesize that low
filaggrin levels influence the quality of these structures and, in
this way, modify the fate of the intercellular lipid lamellae and
corneodesmosomes. Indeed, an abnormal distribution of
corneodesmosome proteins persisting on the flat lower/
ventral sides of superficial corneocytes has been reported in
atopic dermatitis, mostly in skin lesions and to a lower extent
in non-involved skin (Igawa et al. 2013). This is in stark
contrast to the strips from normal subjects in which staining
is present only at the lateral rims of corneocytes (Oyama et al.
2010; Igawa et al. 2013; Singh et al. 2014; Fig. 2) and with
PSD in which corneodesmosin is not detected. Patterns of
corneodesmosome distribution assessed with immunofluores-
cence by using antibodies to corneodesmosin, desmoglein 1
and desmocollin 1 are similar in atopic dermatitis and in

ichthyosis vulgaris, although no information has been provid-
ed concerning the eventual existence of FLG mutations in the
former. This has confirmed the presence of wide-ranging
defects in the cornification occurring in atopic dermatitis
(Guttman-Yassky et al. 2009) but, unfortunately, does not
permit any connection to be made between them and the
eventual occurrence of a filaggrin defect. By the way, in
Netherton syndrome, which also presents a defective SC
barrier function and atopy, the staining pattern is similar,
although the corneocytes were stripped in an irregular way.
The method of immunof luorescen t labe l ing of
corneodesmosome proteins on tape-stripped corneocytes was
originally used by Oyama et al. (2010) who studied the
lesional skin of two other inflammatory dermatoses with
altered terminal differentiation, namely psoriasis and lichen
planus. These authors found a diffuse pattern of desmoglein 1
distribution all over the surface of corneocytes from the pso-
riatic scale, reminiscent of the above-described findings in
ichthyosis vulgaris, suggesting that corneodesmosome reten-
tion at the ventral/dorsal surfaces of cells might not be patho-
gnomonic but rather related to the relative “maturity” of
individual corneocytes in various types of lesions. This point
of view seems to be strengthened by the biochemical anal-
ysis of the pattern of the cleavage of corneodesmosome
proteins in psoriasis, as presented by Simon et al. (2008).
The authors detected a near full-length form of
corneodesmosin that has not been previously observed in
normal SC and altered proteolysis of desmoglein 1,
desmocollin 1 and plakoglobin, indicating a reduced degra-
dation of all corneodesmosomal proteins in psoriatic lesions.
Studies of dandruff have shown that the persistence of non-
peripheral corneodesmosomes is a characteristic feature of
the perturbed desquamation seen in this scalp affliction
(Singh et al. 2014). The reported observations of the con-
comitant increased expression of LEKTI-1 and SCCA1 ser-
ine protease inhibitors are consistent with the view that the
dandruff condition is characterized by an imbalance in
protease/protease inhibitor interaction in the SC.

Acquired forms of corneodesmosome dysfunction
and their impact on the SC barrier

Topical application of sodium lauryl sulfate (SLS) detergent to
the skin is known to disrupt SC function and is used as a
reference in irritation tests in vivo. Skin challenged with 1 %
SLS in occlusive patch reacts with early changes of mRNA
expression reflecting the up-regulation of pro-barrier elements
such as involucrin and transglutaminase 1 and the down-
regulation of serine proteases involved in corneodesmosome
degradation (Törmä et al. 2008). In soap-induced xerosis, non-
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peripheral corneodesmosomes also remain undegraded in the
upper SC (Rawlings et al. 1994; Rawlings and Voegeli 2013).

Human skin chronically exposed to low temperatures and
dry air develops SC dryness characterized by roughness and a
papyraceous appearance of the surface, the presence of raised
squames and/or scales and irritation, commonly called winter
xerosis. In this reactive condition, the persistence of both
peripheral and non-peripheral corneodesmosomes in the up-
per SC has been observed (Simon et al. 2001b). A non-

specific character of such corneodesmosome distribution is
highlighted by this example.

Epidermal differentiation in palmar/plantar ridged skin
represents a particular case, because here corneodesmosomes
are not degraded in a pattern known from normal
interfollicular epidermis but persist all around the corneocytes
up to the surface (Mils et al. 1992). This occurs together with
corneocyte accumulation in the ridged horny layer conferring
it with more physical resistance. In the case of repeated

Fig. 2 Corneodesmosome
distribution as highlighted by
immunogold labeling with an
anti-corneodesmosin monoclonal
antibody. a, b Labeling of native
superficial tape-stripped
corneocytes revealed with 1-nm
immunogold enhanced with silver
coating and observed by scanning
electron microscopy. Only lateral
rims of the desquamating cells are
labeled (arrows). c Post-
embedding labeling with 10-nm
gold granules on a vertical section
of normal stratum corneum
compactum as visualized by
transmission electron microscopy
(arrows corneodesmosomes
present both at the lateral and at
the ventral/dorsal faces of the
cells, SGstratum granulosum,
SC1, SC2successive horny
layers). Bars 50 μm (a),20 μm
(b), 200 nm (c)
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mechanical stress, the palmar/plantar epidermis reacts with an
additional accumulation of the SC, leading to the clinical
appearance of calluses. These physiological features well
demonstrate the importance of corneodesmosome junctions
in the response of the SC to the environment.

Concluding remarks

Corneodesmosome dysfunction and SC shedding are condi-
tions that clearly affect the epidermal barrier. Impaired barrier
function results in an increased cutaneous penetration of en-
vironmental allergens and can lead to eczematous reactions.
Links between skin inflammation, protease/inhibitor balance,
filaggrin processing, the composition and molecular arrange-
ment of the extracellular lipid matrix, corneodesmosome-deg-
radation–dependent desquamation and SC barrier function do
indeed exist and should be further investigated.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License, which permits any use, distribution and
reproduction in any medium, provided the original author(s) and the
source are credited.
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