534 research outputs found

    Bayesian model averaging: improved variable selection for matched case-control studies

    Get PDF
    Background: The problem of variable selection for risk factor modeling is an ongoing challenge in statistical practice. Classical methods that select one subset of exploratory risk factors dominate the medical research field. However, this approach has been criticized for not taking into account the uncertainty of the model selection process itself. This limitation can be addressed by a Bayesian model averaging approach: instead of focusing on a single model and a few factors, Bayesian model averaging considers all the models with non-negligible probabilities to make inference. Methods: This paper reports on a simulation study designed to emulate a matched case-control study and compares classical versus Bayesian model averaging selection methods. We used Matthews’s correlation coefficient to measure the quality of binary classifications. Both classical and Bayesian model averaging were also applied and compared for the analysis of a matched case-control study of patients with methicillin-resistant Staphylococcus aureus infections after hospital discharge 2011-2013. Results: Bayesian model averaging outperformed the classical approach with much lower false positive rates and higher Matthew’s correlation scores. Bayesian model averaging also produced more reliable and robust effect estimates. Conclusion: Bayesian model averaging is a conceptually simple, unified approach that produces robust results. It can be used to replace controversial P-values for case-control study in medical research

    Field trials and test results of portable DVB-T systems with transmit delay diversity

    Get PDF
    This paper describes work carried out by Brunel University and Broadreach Systems (UK) to quantify the advantages that can be achieved if Transmit Diversity is applied to systems employing the DVB standard. The techniques investigated can be applied to standard receiver equipment without modification. An extensive and carefully planned field trial was performed during the winter of 2007/2008 in Uxbridge (UK) to validate predictions from theoretical modeling and laboratory simulations. The transmissions were performed in the 730 MHz frequency band with a DVB-T transmitter and a mean power of 18.4dBW. Transmit delay diversity has been observed to deliver significant reception improvement in automotive and indoor- non line of sight situations

    Toward a Critical Race Realism

    Full text link
    • …
    corecore