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INTRODUCTION 

In early 2016, the American Statistical Association 
(ASA) Board issued a policy statement on the use of 
P-values and statistical significance that was 
unprecedented. According to the ASA board’s statement,
scientific conclusions should not be based solely on whether
or not P-values pass a threshold. The reason is that this 
practice

“encourages the use of terminology such as significant/ 
non-significant, and converts a probability into certainty” 
[1], which is contrary to the purpose of using statistics: to 
provide evidence incrementally for decision-making rather 
than make an immediate decision [2]. Bayesian probability 
is an alternative paradigm of statistical inference: while P-
values quantify the probability of the data given the null 
hypothesis: P(D|H0), Bayesians calculate the probability of 
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the hypothesis given the data: P(H1|D). Although far less 
used than P-values, Bayesian inference is more intuitive: it 
assigns a probability to a hypothesis based on how likely we 
think it to be true [2]. 

In this paper, we focus on model selection with a 
Bayesian approach. Model selection has posed significant 
challenges for many statisticians, numerous strategies have 
been developed [3-5] and yet no universal agreed-upon 
standard has emerged. In conventional model selection, a 
single model typically is selected based on P-values, and 
only those variables ‘selected’ by the model are considered. 
Also, because a single universally approved model selection 
strategy is unavailable, different approaches are used, 
which can result in different subsets of variables selected in 
a final model and, in turn, different results and conclusions. 
Bayesian model averaging (BMA) is a solution that closes an 
important methodological gap and obviates the need for 
complicated or sometimes confused modeling strategies. 
Instead of focusing on a single model and a few factors, 
BMA considers all the models with non-negligible 
probabilities and the posterior probabilities for all variables 
are summarized at the end. 

A variable selection method is a way of selecting a 
particular set of independent variables for use in a 
regression model. Stepwise variable selection has been very 
popular for many years for its simplicity. However, stepwise 
selection applies methods intended for one test to many 
tests: as one author has stated, “the maximum F-to- enter 
statistic is not even remotely like an F-distribution”[6]; for a 
large enough data-set, all P-values would be ‘significant’ 
even for non-plausible variables. BMA could provide a way 
around these problems for better predictive power, effect 
estimation and hypothesis testing [7-10]. 

In recent years, investigators have applied BMA in 
numerous medical and epidemiological analytic studies. 
However, most of these investigations have used the 
Bayesian approximate computational approach [8, 9, 11], 
which is still model oriented and, according to O’Hara et al., 
is only feasible to use with a maximum of up to several 
dozens of candidate models [12]. Simulation is a more exact 
method for calculating model probabilities, and Markov 
chain Monte Carlo (MCMC) methods are the most common 
way to simulate from a posterior [13]. An MCMC algorithm 
was used to generate posterior distributions of parameters 
and marginal probabilities for selected models. 

We applied this technique to simulated data as well as 
to data from a previously published medical research paper: 
a matched case control study for risk factors among 
patients with invasive Methicillin-Resistant Staphylococcus 
aureus (MRSA) infection after hospital discharge [14]. By 
comparing BMA with the classical approach, we aim to show 
the importance of accounting for model uncertainty, the 
need to replace P-values with probabilities and to evaluate 
the feasibility of applying MCMC-based BMA to general 
medical research practice. 

METHODS 

Classical approach 

In this paper, we use the forward, stepwise and 
backward variable selection approaches implemented by 
SAS 9.4, 

Bayesian Model Averaging Approach 

The BMA approach uses fundamental Bayesian 
methods as follows. Given the data D, if f(m) is the prior 
probability of model m out of a set of competing models M, 
the posterior probability is given by 

Where f(D|m) is the marginal likelihood calculated using 
f(D|m)= ∫f(D|bm, m)f(bm|m)dbm), f(D|bm) is the likelihood 
of model with parameter bm, and f(bm|m) is the prior of bm

under model m [15]. The problem with this approach is that 
these integrals cannot be computed analytically in most 
case; the set of possible models M increases exponentially 
as the number of variables grows. For instance, the number 
of all possible models is equal to 230 = 1,073,741,824 with 
only p = 30 variables, and the authors have been involved 
with many studies in which many more variables have 
been considered. The calculation or approximation of 
f(D|m) for all m ÎM becomes infeasible. Therefore, MCMC 
methods which generate observations from the joint 
posterior distribution f(m, bm|D) of (m, bm) have become 
popular to estimate f(m|D) and f(bm|m, D) recently. 

In details, for a generalized linear model, if an 
indicator vector is used to represent specific sets of 
variables that are included among the possible sets of 
variables such that (gi = 1) or not included (gi = 0) in the 
model, the linear predictor can be written as 

𝜂 = 	$𝛾&

'

&()

Χ&𝛽&  

Where Xi is the design matrix and bi the parameter 
vector of the full model (including all p available variables 
in the linear predictor) related to the ith term and	𝜂 is the 
dependent variable. The model selection process partitions 
b into (bg, b\g) corresponding to those components of b that 
are included (gi = 1) or not included (gi = 0). Hence the vector 
bg  corresponds to the active parameters of the model (bm), 
while b\g corresponds to the remaining parameters, which  
are not included in the model defined by g. In most cases, 
the prior information is not available, so it is necessary to 
specify the prior distribution to allow the data to determine 
which variables are important. In this study we used the 
popular Zellner’s g-prior with Gibbs variable 
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selection due to its simplicity and efficiency [10]. 
The g-prior for b is the multivariate normal distribution 

with µg,b = 0, i.e. 
𝛽~𝑁'.𝜇0,2, 𝑇0,24)5 

The prior for the inclusion indicator is defined as  
gj ~	Bernoulli(0.5) with an inclusion probability of 50%. 
The elements of mean µg,b for all j = 0,1,…,p is defined as 
following: 

𝜇0,2,6 = .1 − 𝛾65�̅�2: 
For the prior precision matrix T, each element Tj,k is 

equal to the elements of matrix c-2 d-2XTX in the case where 
both variables Xj  and Xk  are included in the model. When at 
least one of them is not included in the model, then Tj,k = 0 
for j ≠ k. Diagonal elements Tj,j denote the pseudo prior 
precision for gj = 0 that is when Xj is excluded from the 
model. Hence we set 

 

𝑇6,; =
𝛾6𝛾;
𝑛𝛿>

[𝑋A𝑋]6; + .1 − 𝛾6𝛾;5Ι(𝑗 = 𝑘)�̅�2:
>  

with c2 = n (sample size) which means the prior has the 
equivalent weight of 1 observation, and d2 ~ Inverse-
Gamma(10-4, 10-4). The proposed µKLM  and SKLM

>
 are estimated 

through maximum likelihood estimation of the full 
model with all variables included. The posterior distribution 
of b and g are obtained through Gibbs sampling, which 
generates a sample from the distribution of each variable in 
turn, conditional on the current values of the other variables. 
The sequence of the samples constitutes a Markov chain, 
and the stationary distribution of that Markov chain is the 
sought-after joint distribution of P(b, g). The details of this 
implementation can be found in the book by Ntzoufras[10] 
and the program was written in WinBugs [16] and R [10, 17, 
18]. Finally, we monitored b and g from the posterior 
distribution and summarized the results. 

 

Simulation study 
 

In accordance with the BMA approach we have 
outlined an illustrative example of its application using 
simulated data that resembles the matched case-control 
studies carried out in practice. We simulated data in a 
similar manner to what has been described by Viallefont et 
al. [19], in which the design of the simulated study was 
based on the literature review of the studies reported in the 
American Journal of Epidemiology in 1996 [19]. We 
modified simulations into a matched 1:2 case-control study 
for our study purpose. The number of variables initially 
under consideration was 32. Among these variables, the 
number actually associated with the health outcome, i.e., 
the typical dimension reported in the literature of a ‘final 
model’ found for a case control study, was chosen as 10 

(nominal significant) [19]. For the 10 variables designed to 
be associated with the health outcome, 5 were correlated 
with each other, and 5 were independent of each other. The 
remaining 22 variables not related to the health outcome 
were correlated with each other, factors associated with 
the health outcome or were independent. The goal was 
to simulate the scenario where ‘explanatory’ variables 
are recorded, as in a typical epidemiological study. All 
variables were dichotomized for simplicity purpose, which 
is also common practice in logistic regression [19]. The 
model can easily be extended to include variables of any 
types. We generated a matrix having 50,000 rows by 33 
columns to represent a population under study, with 
32 columns representing variables and one column to 
represent the health outcome. The correlated variables 
were simulated with correlated probabilities in the range of 
[0.3-0.6]. The variables linked to outcome were simulated 
with absolute odds ratios in the interval [1.4, 3.5] and 
exposure rates in the range of [0.2, 0.6], while the odds ratio 
for remaining variables were set to 1. The outcome variable 
was simulated using the following equation: 

log R
Pr	(𝑌 = 1)
Pr(𝑌 = 0)

W = 	𝛽X +$Χ&𝛽&

'

&()

 

with b0 was adjusted so as to yield the prevalence 
rate of approximately 1% to reflect the rare disease often 
found in epidemiological study, with 𝛽&	(𝑖 = 23, … , 32) 
associated with 𝑌	as mentioned above. From the 
population of 50,000, we randomly selected 200 cases 
and 400 control to form a 1:2 matched case-control 
study, and 10 such case-control data-sets were generated. 

 

Analysis 
 

The model selection results may or may not match the 
nominal status of the variables. In this setting: 

• True positive (TP): nominal significant variable 
correctly selected into model 

• False positive (FP): nominal non-significant 
variable incorrectly selected into model 

• True negative (TN): nominal non-significant 
variable correctly not selected into model 

• False negative (FN): nominal significant variable 
incorrectly not selected into model 

The above four outcomes can be formulated in a 2 x 2 
table called a confusion matrix. Based on the cell values of 
the confusion matrix, we calculated the false positive rate 
= FP/ (FP+TN), and false negative rate = FN / (TP+FN). To 
describe the confusion matrix of true and false positives and 
negatives by a single number, we used the Matthews 
correlation coefficient (MCC) [20], which is generally 
regarded as being one of the best such measures [21]: 
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𝑀𝐶𝐶 =	
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

b(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

 
The MCC is in essence a correlation coefficient 

between the observed and predicted binary classifications; 
it returns a value between –1 and +1. A coefficient of +1 
represents a perfect prediction, 0 no better than random 
prediction and -1 indicates total disagreement between 
prediction and observation. For 10 data samples and 32 
variables, we have 320 P-values to consider in the classical 
approach and 320 g for BMA. The conventional rule of 
thumb for interpreting g is that if it is less than 50%, there 
is no evidence for Xγ being a risk factor; if it is between 50% 
and 75% there is weak evidence for Xγ   being a risk factor; if 
it is between 75% and 95% there is positive evidence, 
between 95% and 99% the evidence is strong, and beyond 
99% the evidence is very strong [22]. Therefore we 
considered P-values significant at P < 0.05 for the classical 
approach and mean of g > 75% for BMA, which is equivalent 
to P < 0.05 in classical approach [19]. In addition, for 
nominal significant variables, we also considered the ‘weak 
evidence’ with g > 50% for BMA and P < 0.1 for classical 
approach. In this paper, all the P-values are two-sided. 

 

MRSA matched case-control study 
 

To demonstrate the application of BMA to 
epidemiological research, we re-analyzed a case-control 
study for invasive MRSA infections, for which the original 
data analysis was reported by Epstein et al [14]. A case was 
defined as MRSA cultured from a normally sterile body site 
in a patient discharged from a hospital within the prior 12 
weeks. For each case patient, two controls were matched 
for hospital, month of hospital discharge, and age group. 
Potential risk factors present during the hospitalization and 
post-discharge period were collected. A total of 194 case 
patients and 388 matched controls were enrolled. The 
Centers for Disease Control and Prevention review boards 
approved the study. Because the study posed no greater 
than minimal risk to participants, a waiver of informed 
consent was granted to review medical records in both the 
hospitals and nursing homes. Verbal consent was obtained 
from all participants who were interviewed. 

In the original published paper, the data set was 
analyzed as a matched set. The classical approach in the 
paper was based on Hosmer’s book ‘Applied logistic 
regression’ [3], and the details of modeling strategies can be 
seen in the original paper [14]. As a selection strategy, they 
first performed conditional logistic regression for all 32 
variables independently. Conditional logistic regression 
with backward selection was then performed for the set of 
variables with P ≤ 0.25 from univariable regression,  

at the end, the variables with P > 0.25 were also entered to 
test whether they become significant after controlling for 
other confounders. The authors did not include any 
interaction terms, and did not focus on any specific factor of 
the 32. The definition of the variables can be seen in the 
original paper [14] .We reanalyzed the data using BMA with 
the same data definition from [14]. We also did not consider 
any interaction terms and used conditional logistic regression 
to analyze the data. 

 

RESULTS 

Table 1 summarizes the results of running logistic 
regression on the entire simulated population with all 32 
variables included. Coefficients and P-values are shown for 
X23-X32 which are designed to be correlated with Y; P-values 
were not significant for X1-X22 as designed (not shown in the 
table). When running the full model with all 
32 variables for 10 matched case-control subsets, we 
noticed that 22 out of 220 (10%) variables designed not to 
be significant (nominal non-significant) at the p < 0.05 level 
became significant, and only 75 out of 100 (75%) variables 
designed to be significant (nominal-significant) remained 
significant in the 10 subsets. 

We analyzed the 10 matched case control data-sets 
using the classical approach and BMA. The total number 
of variable selected by BMA was 69 (TP+FP) with g > 75% 
and 85 with additional nominal significant variables 
included at g > 50%. The total number of variables 
selected by stepwise, forward and backward selection 
was 84, 86 and 91 for P < 0.05 and 96, 96 and 95 with 
nominal significant variables included at P < 0.1. 

Table 2 shows that for P < 0.05 / g> 75%, BMA has a 
much lower false positive rate of 2% compared to an 
average of 7% from classical approach. BMA has a slightly 
higher false negative rate of 35% compared to an average 
of 28% from classical approach. With weak evidence 
considered for X23-X32, BMA has lower false positive as 
well as false negative rate compared to the classical 
approach: 2% vs. 8% and 19% vs. 22%, respectively. If we 
use MCC as a single score to evaluate the overall 
performance for both approaches. BMA outperformed 
classical approaches with higher MCC of 0.71 vs. 0.69 
(average) for strong evidence, and 0.83 vs. 0.71 for 
including nominal significant variables with weak 
evidence. 

In Figure 1, the estimated effects were visualized by 
different methods for the variables designed to be 
associated with outcome (X23-X32). The bottom and top of 
the box represent the minimum and maximum of the effect 
estimates, respectively. The line inside the box represents 
the median. The number on the top of each box represents 
the variable selection frequency. The selection frequency is 
based on P < 0.05 / g > 75%, the black dots are the “true” 
effects from the population. They have been repeated for 
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TABLE 1. Design of the Simulations: Correlation and Strength   
of  the  Simulated Associations 

 
VARIABLES INDEPENDENT OF  Y 

estimates around the true effects (X24, X26, X30). For X32, all 
classical method estimate this effect as negative, while BMA 
estimates it correctly as positive. 

Table 3 shows the results of BMA vs. classical 
approach for MRSA matched case-control dataset. As we 
can see, for g > 75%, the 5 variables selected by BMA 
were all selected by classical approach; for g > 50%, BMA 
would include all the variables selected by classical 
approach except admission diagnosis. In addition, BMA 
also included length of hospital, antibiotic exposure, 
dialysis and other wound during post-discharge period. 
The collection of model selected by BMA is 17,944 out of 
232 = 4,294,967,296 possible models. 

 

PERFORMANCE 
The program was executed on a laptop with Intel® 

Core™ i5-5300 CPU @2.30GHz, 2.29GHz dual processors, 
8.00GB installed memory (RAM) and 64-bit operating 
system. The convergence diagnostics were based on 1) 
Autocorrelation of Markov chain (𝜌def < 30	);
2) Gelman-Rubin  diagnostic (𝑅i <1.0001) [27]; 3) Markov 

chain errors ( < 1% of 
 

 standard errors of model parameters 

 
 
 
 
Abbreviations: OR, odds ratio. 

 
each box for comparison purposes. As we can see, for all 
methods, the variables with larger effects tended to be 
selected more frequently (X23, X24, X26, X27, X29), and the 
ranges of the estimates cover the true effects; when the 
effects are small, the variables are selected less frequently, 
and the ranges of the boxes would not cover the true effects 
or barely cover them (X25 , X28, X31, X32). Compared to the 
classical approaches, BMA provides tighter (X23, X27, X28, X29, 
X31) or comparable range of 

for all β and γ ) [24]. Using the MRSA research data as an 
example, convergence was observed with 150,000 
iterations, for three chains of 50,000 iterations each. On 
average, each iteration required about 0.07 seconds, so 
150,000 iterations took approximately 3 hours. 

 

DISCUSSION 

The results of our analysis underscores the possibility 
that popular model development strategies for matched- 
case control study can produce parameters that show 
strong associations with the outcome only by chance. Our 
simulation study showed that about 10% of parameters that 
were designed to have no association with the outcome in 
a population of 50,000 became significant in the 

 
TABLE 2. Classical Approach vs. Bayesian Model Averaging: True and False Positive and Negative rates and MCC 

 

METHOD P<0.05/g >75% P<0.1/g >50%C 

 FP (%a) TN TP FN (%b) MCC FP (%a) TN TP FN (%b) MCC 

forward 14(6) 206 72 28(28) 0.69 18(8) 202 78 22(22) 0.71 

backward 17(8) 203 74 26(26) 0.68 17(8) 203 78 22(22) 0.71 

stepwise 13(6) 207 71 29(29) 0.69 18(8) 202 78 22(22) 0.71 

BMA 4(2) 216 65 35(35) 0.71 4(2) 216 81 19(19) 0.83 
 

Abbreviations: BMA, Bayesian model averaging; FN (false negative); FP (false positive); MCC (Matthews’s correlation coefficient); TP (true positive); TN    
(true negative). 
a False positive rate = FP/(FP+TN). 
b False negative rate = FN/(TP+FN). 
c P < 0.1 / g > 50% for X23-X32 + P < 0.05 / g > 75% for X1-X22 

X1-10 Independent of each other 

X11-15 Correlated with each other 

X16-20 Correlated with each other 

X21 and X22 Correlate with X23-27 

 VARIABLES ASSOCIATED WITH  Y 

 bi OR P 

 Correlated  with  each other 

X23 1.11 3.03 <0.0001 

X24 -0.79 0.45 <0.0001 

X25 0.35 1.42 <0.0001 

X26 -0.97 0.38 <0.0001 

X27 -1.24 0.29 <0.0001 

 Independent of each  other 

X28 -0.47 0.63 <0.0001 

X29 0.89 2.44 <0.0001 

X30 -0.59 0.55 <0.0001 

X31 -0.54 0.58 <0.0001 

X32 0.35 1.42 <0.0001 
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FIGURE 1. Estimated effects and variable selection frequency, BMA vs. classical approach 
 

Abbreviations: BMA: Bayesian model averaging; BACK, backward selection; For: forward selection; STEP: stepwise selection 
 
 

TABLE 3. Risk Factors for Post-discharge Invasive MRSA, 2011-2013, Classical Approach vs. Bayesian Model Averaging 
 

CLASSICAL  APPROACH BMA 

Variable OR 95% CI P OR 95% HDI Mean(g) 

MRSA colonization 7.7 3.60, 16.51 <0.0001 5.6 2.83, 11.47 1 

Chronic wound during post-discharge  period 4.4 2.14, 9.09 <0.0001 5.2 2.37, 11.97 1 

Male sex 2.2 1.31, 3.63 0.0028 2.8 1.81, 4.61 1 

CVC  at discharge 2.2 1.13, 4.11 0.0191 2.7 1.23, 1.92 0.9 

Charlson comorbidity index >1 1.4 1.17, 1.55 <0.0001 1.2 1.02, 1.35 0.8 

Length of hospital stay (>10 day vs. <=10  day)    2.1 1.10, 4.05 0.7 

Other wound during post-discharge  period    2.4 1.12, 5.17 0.7 

Discharge to nursing home 2.7 1.41, 4.99 0.0024 2.0 1.05, 3.80 0.6 

Antibiotic exposure during post-discharge period    1.9 0.92, 4.02 0.6 

Dialysis during post-discharge  period    2.0 0.38, 9.09 0.6 

Discharge with non-CVC invasive device 3.3 1.24, 7.39 0.0096 1.9 0.86, 4.16 0.5 

Admission  Diagnosis 1.8 1.05, 3.22 0.0405 1.0 0.41, 2.39 0.2 
 

Abbreviations: BMA, Bayesian model averaging; CI, confidence interval; CVC, central venous catheter; HDI, highest density interval; MRSA, methicillin- 
resistant Staphylococcus aureus; OR, odds ratio; 𝛾, inclusion indicator. 

 
randomly selected subset of 600 (false positive variables). 
The classical model strategy selected the false positive 
variables into a final model on an average of 7% of the time, 
while BMA selected them 2% of the time. BMA has slightly 
higher false negative rate of 35% compared to an average 
of 28% from classical approach. Alternatively, if we treat 
nominal significant variables as known risk factors 
supported by literature review and relax the selection 
standard for BMA to g > 50%, the correspond false negative 
rate dropped to 19% and the false positive rate remained 
the same. There is no universal agree on standard on how 
to relax the P value for the classical approach, if we use 

P < 0.1 for the comparison purpose, the classical approach 
has both higher false positive rate and false negative rate 
compared to BMA (Table 2). We also introduced MCC, a 
single score to evaluate the overall performance of the 
binary classification, the results showed that BMA 
outperformed classical approach under both selection cut 
point of P < 0.05 / g > 75% and additional P < 0.10 / g > 50% 
for nominal significant variables. For variables designed to 
be associated with outcome, BMA produced better 
estimates with tighter ranges around the true values, and 
most importantly, BMA consistently quantified the effect 
with correct signs (+/-), while classical approaches 
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reversed the sign of one effect from positive to negative 
(Figure 1). This demonstrates the potential shortcomings of 
depending on one model without taking into account the 
uncertainty associated with the selection of the model itself. 
Another shortcoming is that several different models may all 
seem reasonable given the data, in our simulation study, 
different subset of variables were selected by stepwise, 
forward and backward selection (Table 2, FP+TP), arbitrarily 
selecting a single model can lead to biased inference on the 
effect of interest. 

We applied BMA to data from a published medical 
research study and compared the results to the original 
analysis. Because all the variables under consideration were 
based on a literature review or biological/clinical 
plausibility, we used g > 50% as an indicator of association 
to outcome. As a result, BMA selected seven out of eight 
variables in the final model of classical approach. The only 
exception was the variable “admission diagnosis”, a 
categorical variable created by a data-driven process that 
collapsed 16 different diagnoses into two categories, each 
of which included very heterogeneous diagnoses. This 
variable was selected into final 8 parameter model by the 
classical approach, while the selection probability for this 
parameter was only 24% based on BMA. Furthermore, BMA 
detected evidence of association between the following 
four variables with the outcome: length of hospital stay, 
other wound, dialysis and total antibiotic exposure during 
post-discharge period. These variables have found to be risk 
factors for MRSA in other literature [25-28]. They were 
collected and tested but did not enter the final model with 
the P < 0.05 cut point. As a result, they were not treated as 
risk factors for informing strategies to prevent MRSA, 
although other literature provides evidence that they may 
be important factors. 

We have proposed BMA as a comprehensive way to 
account for model uncertainty. Instead of relying on one 
model, the inference was carried out based on hundreds of 
thousands models and the results are more reliable and 
robust. Another advantage of BMA is that it provides a 
transparent interpretation through the variable’s posterior 
selection probability: the higher the probability, the 
stronger the association between the variable and the 
health outcome. In practice, this information can help to 
focus the limited resources on what matters the most. In 
contrast, classical P-values is hard to interpret, for example, 
the expression “fail to reject the null hypothesis” doesn’t 
mean to “accept the null hypothesis”, either, as a result, P-
values are one of the most misunderstood and 
misinterpreted quantities in research [4]. 

In summary, BMA eliminates the need for complicated 
model selection and cross validation strategies that can lead 
to different results and conclusions. Our study demonstrates 
that BMA is a conceptually simple, unified approach that 
produces robust results. Bayesian way of dealing with the 
model uncertainty problem has been found to be the only 
way[14]. Compared to the classical approach, BMA 

can be both highly specific and sensitive if coupled with 
proper use of prior information. Another advantage is that 
results are easy to interpret. With advances in computer 
technology and computing power, a laptop alone can be 
used with ease for a typical medical research study. 
Computations involving hundreds of observations and 
dozens of variables can be completed within hours. 

Bayesian inference has been controversial because it 
uses the prior distribution, which is subjectively determined 
by the user. However, prior can be totally non-informative, 
or equivalent to the weight of 1 observation in our study, 
which has little influence on the posterior estimates for the 
typical medical research with hundreds of thousands 
observations. A word of caution is that BMA is not a 
substitute for careful incorporation of available scientific 
knowledge or for careful data analysis. This together can 
lead to a set of possible confounders, or potential risk 
factors for further consideration with BMA. 
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