146 research outputs found

    Saltmarsh restoration through construction of sedimentation fields:controls on sediment delivery and hydrodynamics

    Get PDF
    Saltmarshes provide important ecosystem services including habitat for wading and migratory birds, nursery grounds for commercial fish species, carbon storage, and flood defence through wave attenuation. Stimulating saltmarsh growth may improve the local level of flood protection, reducing the need for costly engineering works to sea walls and defences, whilst also enhancing the provision of other services. This is particularly important at locations where there is a need to restore and compensate for the loss of saltmarsh due to erosion caused by sea level rise, land claim, and a reduction in sediment supply. One method of encouraging marsh growth is through the construction of sedimentation fields or polders, typically out of brushwood fencing, to reduce current velocities and wave heights with the aim of increasing sedimentation rates. However, little is known of the impact polders have on the timing and rate of sediment delivery, or of saltmarsh response to changes in hydrodynamics. This is particularly the case for relatively exposed sites with a large tidal range, with most sedimentation fields constructed in sheltered locations with micro- to meso-tidal ranges such as the Wadden Sea

    DNA Methylation Signatures within the Human Brain

    Get PDF
    DNA methylation is a heritable modification of genomic DNA central to development, imprinting, transcriptional regulation, chromatin structure, and overall genomic stability. Aberrant DNA methylation of individual genes is a hallmark of cancer and has been shown to play an important role in neurological disorders such as Rett syndrome. Here, we asked whether normal DNA methylation might distinguish individual brain regions. We determined the quantitative DNA methylation levels of 1,505 CpG sites representing 807 genes with diverse functions, including proliferation and differentiation, previously shown to be implicated in human cancer. We initially analyzed 76 brain samples representing cerebral cortex (n=35), cerebellum (n=34), and pons (n=7), along with liver samples (n=3) from 43 individuals. Unsupervised hierarchical analysis showed clustering of 33 of 35 cerebra distinct from the clustering of 33 of 34 cerebella, 7 of 7 pons, and all 3 livers. By use of comparative marker selection and permutation testing, 156 loci representing 118 genes showed statistically significant differences—a ⩾17% absolute change in DNA methylation (P<.004)—among brain regions. These results were validated for all six genes tested in a replicate set of 57 samples. Our data suggest that DNA methylation signatures distinguish brain regions and may help account for region-specific functional specialization

    Chiral monoterpenes reveal forest emission mechanisms and drought responses

    Get PDF
    Monoterpenes (C10H16) are emitted in large quantities by vegetation to the atmosphere (>100 TgC year−1), where they readily react with hydroxyl radicals and ozone to form new particles and, hence, clouds, affecting the Earth’s radiative budget and, thereby, climate change1,2,3. Although most monoterpenes exist in two chiral mirror-image forms termed enantiomers, these (+) and (−) forms are rarely distinguished in measurement or modelling studies4,5,6. Therefore, the individual formation pathways of monoterpene enantiomers in plants and their ecological functions are poorly understood. Here we present enantiomerically separated atmospheric monoterpene and isoprene data from an enclosed tropical rainforest ecosystem in the absence of ultraviolet light and atmospheric oxidation chemistry, during a four-month controlled drought and rewetting experiment7. Surprisingly, the emitted enantiomers showed distinct diel emission peaks, which responded differently to progressive drying. Isotopic labelling established that vegetation emitted mainly de novo-synthesized (−)-α-pinene, whereas (+)-α-pinene was emitted from storage pools. As drought progressed, the source of (−)-α-pinene emissions shifted to storage pools, favouring cloud formation. Pre-drought mixing ratios of both α-pinene enantiomers correlated better with other monoterpenes than with each other, indicating different enzymatic controls. These results show that enantiomeric distribution is key to understanding the underlying processes driving monoterpene emissions from forest ecosystems and predicting atmospheric feedbacks in response to climate change

    Oralism: a sign of the times? The contest for deaf communication in education provision in late nineteenth-century Scotland

    Get PDF
    Disability history is a diverse field. In focussing upon children within deaf education in late nineteenth-century Scotland, this essay reflects some of that diversity. In 1880, the International Congress on the Education of the Deaf in Milan stipulated that speech should have ‘preference’ over signs in the education of deaf children. The mode of achieving this, however, effectively banned sign language. Endeavours to teach deaf children to articulate were not new, but this decision placed pressures on deaf institutions to favour the oral system of deaf communication over other methods. In Scotland efforts were made to adopt oralism, and yet educators were faced with the reality that this was not good educational practice for most pupils. This article will consider responses of Scottish educators of deaf children from the 1870s until the beginning of the twentieth century

    Beyond the looking glass: recent advances in understanding the impact of environmental exposures on neuropsychiatric disease

    Get PDF
    The etiologic pathways leading to neuropsychiatric diseases remain poorly defined. As genomic technologies have advanced over the past several decades, considerable progress has been made linking neuropsychiatric disorders to genetic underpinnings. Interest and consideration of nongenetic risk factors (e.g., lead exposure and schizophrenia) have, in contrast, lagged behind heritable frameworks of explanation. Thus, the association of neuropsychiatric illness to environmental chemical exposure, and their potential interactions with genetic susceptibility, are largely unexplored. In this review, we describe emerging approaches for considering the impact of chemical risk factors acting alone and in concert with genetic risk, and point to the potential role of epigenetics in mediating exposure effects on transcription of genes implicated in mental disorders. We highlight recent examples of research in nongenetic risk factors in psychiatric disorders that point to potential shared biological mechanisms—synaptic dysfunction, immune alterations, and gut–brain interactions. We outline new tools and resources that can be harnessed for the study of environmental factors in psychiatric disorders. These tools, combined with emerging experimental evidence, suggest that there is a need to broadly incorporate environmental exposures in psychiatric research, with the ultimate goal of identifying modifiable risk factors and informing new treatment strategies for neuropsychiatric disease

    Follow-up of atheroma burden with sequential whole body contrast enhanced MR angiography:a feasibility study

    Get PDF
    Assess the feasibility of whole body magnetic resonance angiography (WB-MRA) for monitoring global atheroma burden in a population with peripheral arterial disease (PAD). 50 consecutive patients with symptomatic PAD referred for clinically indicated MRA were recruited. Whole body MRA (WB-MRA) was performed at baseline, 6 months and 3 years. The vasculature was split into 31 anatomical arterial segments. Each segment was scored according to degree of luminal narrowing: 0 = normal, 1 = <50 %, 2 = 50–70 %, 3 = 71–99 %, 4 = vessel occlusion. The score from all assessable segments was summed, and then normalised to the number of assessable vessels. This normalised score was divided by four (the maximum vessel score) and multiplied by 100 to give a final standardised atheroma score (SAS) with a score of 0–100. Progression was assessed with repeat measure ANOVA. 36 patients were scanned at 0 and 6 months, with 26 patients scanned at the 3 years follow up. Only those who completed all three visits were included in the final analysis. Baseline atherosclerotic burden was high with a mean SAS of 15.7 ± 10.3. No significant progression was present at 6 months (mean SAS 16.4 ± 10.5, p = 0.67), however there was significant disease progression at 3 years (mean SAS 17.7 ± 11.5, p = 0.01). Those with atheroma progression at follow-up were less likely to be on statin therapy (79 vs 100 %, p = 0.04), and had significantly higher baseline SAS (17.6 ± 11.2 vs 10.7 ± 5.1, p = 0.043). Follow up of atheroma burden is possible with WB-MRA, which can successfully quantify and monitor atherosclerosis progression at 3 years follow-up

    Variation in 5-hydroxymethylcytosine across human cortex and cerebellum

    Get PDF
    Background: The most widely utilized approaches for quantifying DNA methylation involve the treatment of genomic DNA with sodium bisulfite; however, this method cannot distinguish between 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). Previous studies have shown that 5hmC is enriched in the brain, although little is known about its genomic distribution and how it differs between anatomical regions and individuals. In this study, we combine oxidative bisulfite (oxBS) treatment with the Illumina Infinium 450K BeadArray to quantify genome-wide patterns of 5hmC in two distinct anatomical regions of the brain from multiple individuals. Results: We identify 37,145 and 65,563 sites passing our threshold for detectable 5hmC in the prefrontal cortex and cerebellum respectively, with 23,445 loci common across both brain regions. Distinct patterns of 5hmC are identified in each brain region, with notable differences in the genomic location of the most hydroxymethylated loci between these brain regions. Tissue-specific patterns of 5hmC are subsequently confirmed in an independent set of prefrontal cortex and cerebellum samples. Conclusions: This study represents the first systematic analysis of 5hmC in the human brain, identifying tissue-specific hydroxymethylated positions and genomic regions characterized by inter-individual variation in DNA hydroxymethylation. This study demonstrates the utility of combining oxBS-treatment with the Illumina 450k methylation array to systematically quantify 5hmC across the genome and the potential utility of this approach for epigenomic studies of brain disorders

    Cohort comparison study of cardiac disease and atherosclerotic burden in type 2 diabetic adults using whole body cardiovascular magnetic resonance imaging

    Get PDF
    BACKGROUND: Whole body cardiovascular MR (WB CVMR) combines whole body angiography and cardiac MR assessment. It is accepted that there is a high disease burden in patients with diabetes, however the quantification of the whole body atheroma burden in both arterial and cardiac disease has not been previously reported. In this study we compare the quantified atheroma burden in those individuals with and without diabetes by clinical cardiovascular disease (CVD) status. METHODS: 158 participants underwent WB CVMR, and were categorised into one of four groups: (1) type 2 diabetes mellitus (T2DM) with CVD; (2) T2DM without CVD; (3) CVD without T2DM; (4) healthy controls. The arterial tree was subdivided into 31 segments and each scored according to the degree of stenosis. From this a standardised atheroma score (SAS) was calculated. Cardiac MR and late gadolinium enhancement images of the left ventricle were obtained for assessment of mass, volume and myocardial scar assessment. RESULTS: 148 participants completed the study protocol—61 % male, with mean age of 64 ± 8.2 years. SAS was highest in those with cardiovascular disease without diabetes [10.1 (0–39.5)], followed by those with T2DM and CVD [4 (0–41.1)], then those with T2DM only [3.23 (0–19.4)] with healthy controls having the lowest atheroma score [2.4 (0–19.4)]. Both groups with a prior history of CVD had a higher SAS and left ventricular mass than those without (p < 0.001 for both). However after accounting for known cardiovascular risk factors, only the SAS in the group with CVD without T2DM remained significantly elevated. 6 % of the T2DM group had evidence of silent myocardial infarct, with this subcohort having a higher SAS than the remainder of the T2DM group [7.7 (4–19) vs. 2.8 (0–17), p = 0.024]. CONCLUSIONS: Global atheroma burden was significantly higher in those with known cardiovascular disease and without diabetes but not in those with diabetes and cardiovascular disease suggesting that cardiovascular events may occur at a lower atheroma burden in diabetes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12933-015-0284-2) contains supplementary material, which is available to authorized users
    • …
    corecore