12 research outputs found

    Accounting for viscoelastic effects in a multiscale fatigue model for the degradation of the dynamic stiffness of short-fiber reinforced thermoplastics

    Get PDF
    Under fatigue loading, the stiffness decrease in short-fiber reinforced polymers reflects the gradual degradation of the material. Thus, both measuring and modeling this stiffness is critical to investigate and understand the entire fatigue process. Besides evolving damage, viscoelastic effects within the polymer influence the measured dynamic stiffness. In this paper, we study the influence of a linear viscoelastic material model for the matrix on the obtained dynamic stiffness and extend an elastic multiscale fatigue-damage model to viscoelasticity. Our contribution is two-fold. First, we revisit the complex-valued elastic models known in the literature to predict the asymptotic periodic orbit of a viscoelastic material. For small phase shifts in an isotropic linear viscoelastic material, we show through numerical experiments that a real-valued computation of an “elastic” material is sufficient to approximate the dynamic stiffness of a microstructure with a generalized Maxwell material and equal Poisson’s ratios in every element as matrix, reinforced by elastic inclusions. This makes standard solvers applicable to fiber-reinforced thermoplastics. Secondly, we propose a viscoelastic fatigue-damage model for the thermoplastic matrix based on decoupling of the time scales where viscoelastic and fatigue-damage effects manifest. We demonstrate the capability of the multiscale model to predict the dynamic stiffness evolution under fatigue loading of short-fiber reinforced polybutylene terephthalate (PBT) by a validation with experimental results

    A multiscale high-cycle fatigue-damage model for the stiffness degradation of fiber-reinforced materials based on a mixed variational framework

    Get PDF
    Under fatigue-loading, short-fiber reinforced thermoplastic materials typically show a progressive degradation of the stiffness tensor. The stiffness degradation prior to failure is of primary interest from an engineering perspective, as it determines when fatigue cracks nucleate. Efficient modeling of this fatigue stage allows the engineer to monitor the fatigue-process prior to failure and design criteria which ensure a safe application of the component under investigation. We propose a multiscale model for the stiffness degradation in thermoplastic materials based on resolving the fiber microstructure. For a start, we propose a specific fatigue-damage model for the matrix, and the degradation of the thermoplastic composite arises from a rigorous homogenization procedure. The fatigue-damage model for the matrix is rather special, as its convex nature precludes localization, permits a well-defined upscaling, and is thus well-adapted to model the phase of stable stiffness degradation under fatigue loading. We demonstrate the capabilities of the full-field model by comparing the predictions on fully resolved fiber microstructures to experimental data. Furthermore, we introduce an associated model-order reduction strategy to enable component-scale simulations of the local stiffness degradation under fatigue loading. With model-order reduction in mind and upon implicit discretization in time, we transform the minimization of the incremental potential into an equivalent mixed formulation, which combines two rather attractive features. More precisely, upon order reduction, this mixed formulation permits precomputing all necessary quantities in advance, yet, retains its well-posedness in the process. We study the characteristics of the model-order reduction technique, and demonstrate its capabilities on component scale. Compared to similar approaches, the proposed model leads to improvements in runtime by more than an order of magnitude

    Factors influencing the dynamic stiffness in short‐fiber reinforced polymers

    Get PDF
    In short‐fiber reinforced polymers, fatigue damage is typically characterized by measuring the dynamic stiffness and its degradation under cyclic loading. Computational homogenization methods may be used to characterize the fatigue behavior of the composite via numerical predictions. Such an approach may reduce the experimental effort significantly. In the previous works, the authors proposed an elastic fatigue damage model for predicting the relative stiffness degradation of short‐fiber reinforced materials. However, the absolute value of the dynamic stiffness within the first cycle showed deviations from the expected elastic material behavior. Thus, the effect of viscoelastic polymer behavior as well as different microstructure descriptors on the dynamic stiffness is studied in the work at hand

    Effiziente Multiskalen-Methode fĂŒr ViskoelastizitĂ€t und ErmĂŒdung von kurzfaserverstĂ€rkten Polymeren

    No full text
    KurzfaserverstĂ€rkte Polymere sind in aktuellen industriellen Anwendungen wie beispielsweise in Leichtbauanwendungen von zentraler Bedeutung. Dies ist vor allem durch deren außergewöhnlich gutes VerhĂ€ltnis zwischen geringem Gewicht und hoher Steifigkeit bedingt. Die Verarbeitung dieser Verbundwerkstoffe im Spritzgussverfahren zu Bauteilen mit komplexen Geometrien macht sie vorrangig in der Großserienproduktion zu einer kostengĂŒnstigen Alternative zu metallischen Werkstoffen. Die komplexe mikroskopische Struktur von kurzfaserverstĂ€rkten Polymeren gestaltet deren experimentelle Charakterisierung jedoch schwierig und zeitintensiv. Besonders die Auslegung von kurzfaserverstĂ€rkten Bauteilen im Hinblick auf deren Langzeitverhalten, wie deren Lebensdauer unter zyklischer Belastung oder Kriechbelastung ist eine komplexe Aufgabe, denn das mechanische Verhalten dieser Bauteile ist von den komplexen morphologischen Parametern der Mikrostruktur abhĂ€ngig. Eine konventionelle Simulation ohne BerĂŒcksichtigung der durch die lokale Mikrostruktur bedingten Materialeigenschaften auf rein makroskopischer Skala ist in vielen Anwendungen daher nicht ausreichend. Eine Multiskalensimulation von kurzfaserverstĂ€rkten Bauteilen ist deshalb notwendig, um das Materialverhalten dieser Bauteile korrekt vorherzusagen und somit deren experimentelle Charakterisierung zu unterstĂŒtzen. In der vorliegenden Arbeit wird in Kapitel 3 eine effiziente datenbasierte Multiskalen-Methode vorgestellt, welche es ermöglicht, den Einfluss der Mikrostruktur in der Bauteilsimulation zu berĂŒcksichtigen. HauptsĂ€chlich wird hierbei auf den Einfluss des Faserorientierungszustandes eingegangen. Um die Multiskalensimulation von realen Bauteilen aus der Industrie zu ermöglichen, wird in dieser Arbeit auf effektive bzw. reduzierte Modelle zurĂŒckgegriffen. Diese Multiskalen-Methode besteht aus zwei Schritten. Zuerst werden fĂŒr vorgegebene FaserorientierungszustĂ€nde effektive Modelle generiert. In dieser Arbeit erfolgt dies mittels auf der schnellen Fouriertransformation (FFT) basierten numerischer Homogenisierungsmethoden, welche sich als besonders geeignet fĂŒr die Simulation von kurzfaserverstĂ€rkten Polymeren zeigt. Aufgrund ihrer Effizienz ermöglicht es diese numerische Homogenisierungsmethode, das Randwertproblem auf der Mikroskala fĂŒr große Volumenelemente schnell zu lösen. In Kapitel 4 wird mithilfe von Schaperys Kollokationsmethode zusammen mit der FFT-basierten Homogenisierung ein Effektivmodell zur Vorhersage des Kriechverhaltens von mit Kurzglasfasern verstĂ€rktem Polyamid identifiziert. Die Multiskalen-Methode wird fĂŒr diese von der Faserorientierung abhĂ€ngigen Effektivmodelle in einer makroskopischen FE-Simulation mit dem kommerziellen Finite Elemente (FE) Löser Abaqus fĂŒr ein Bauteil angewendet. In Kapitel 5 wird ein Modell zur Vorhersage der Steifigkeitsabnahme in kurzfaserverstĂ€rkten Polymeren unter zyklischer Belastung vorgestellt. Dieses Modell beruht auf einem einfachen isotropen nichtlokalen ErmĂŒdungsmodell im Matrixmaterial mit einer minimalen Anzahl von Parametern. Die EinflĂŒsse der numerischen Parameter und Materialparameter auf die effektive Steifigkeit werden in Kapitel 5 ausgiebig studiert. Zudem wird der Einfluss geometrischer MikrostrukturgrĂ¶ĂŸen wie beispielsweise des Faservolumengehalts und der Faserorientierung untersucht. Aufgrund der speziellen Struktur dieses Modells wird durch eine Modellreduktion vom Galerkin-Typ ein reduziertes Modell identifiziert. Weiterhin wird dieses reduzierte Modell in einer makroskopischen FE-Simulation im Multiskalen-Rahmen angewendet.Short fiber reinforced polymers are of central importance in many industrial applications such as lightweight constructions. This is mainly due to their exceptional weight to stiffness ratio. The processing of these composite materials by injection molding to components with complex geometries makes them a cost-efficient alternative to metallic materials, primarily in large-scale production. However, the complex microstructure of short fiber reinforced polymers makes their experimental characterization difficult and time consuming. Especially the design of short fiber reinforced components with regard to their long-term behavior, such as their lifetime under cyclic loading or creep, is a complex task. The mechanical behavior of these components depends on the complex morphological parameters of the underlying microstructures. In many applications a conventional simulation on the macroscopic scale without consideration of the material properties caused by the underlying microstructures is therefore not sufficient. A multi-scale simulation of short fiber reinforced components is necessary to precisely predict the material behavior of these components and thus to support their experimental characterization. In chapter 3 of the present work, an efficient data-based multi-scale method is presented, which takes into account the influence of the microstructure in component-scale simulations. In order to enable the multi-scale simulation of components of industrially relevant sizes, effective or reduced models are used in this thesis. The multi-scale approach consists of two steps. Firstly, effective models are generated for given fiber orientation states. In this thesis fast Fourier transform (FFT) based numerical homogenization methods are used for this purpose. These methods are particularly suitable for the simulation of short fiber reinforced polymers. Due to its efficiency, the micro-scale boundary value problem can be solved quickly for large volume elements. In the second stage of the multi-scale method, the generated effective models are interpolated to predict the material response for a general fiber orientation state. In chapter 4, Schapery's collocation method together with FFT-based homogenization is used to identify an effective model for predicting the creep behavior of short glass fiber reinforced polyamide. The multi-scale method using these fiber orientation dependent effective models is applied in a macroscopic finite element (FE) simulation, where the commercial FE-solver Abaqus is used on the component-scale. In chapter 5, a model for the prediction of the stiffness degradation in short fiber reinforced polymers under cyclic loading is presented. This model is based on a simple isotropic non-local fatigue model for the matrix material with a very small number of parameters. The influence of the numerical and material parameters on the effective stiffness is studied extensively in chapter 5. Furthermore, the influence of morphological properties, such as fiber volume content and fiber orientation, is investigated. Due to the special structure of this model, a reduced order model is identified by Galerkin-type model order reduction. Moreover, this reduced model is applied in a macroscopic FE-simulation within the multi-scale framework

    Effiziente Multiskalen-Methode fĂŒr ViskoelastizitĂ€t und ErmĂŒdung von kurzfaserverstĂ€rkten Polymeren

    No full text
    KurzfaserverstĂ€rkte Polymere sind in aktuellen industriellen Anwendungen wie beispielsweise in Leichtbauanwendungen von zentraler Bedeutung. Dies ist vor allem durch deren außergewöhnlich gutes VerhĂ€ltnis zwischen geringem Gewicht und hoher Steifigkeit bedingt. Die Verarbeitung dieser Verbundwerkstoffe im Spritzgussverfahren zu Bauteilen mit komplexen Geometrien macht sie vorrangig in der Großserienproduktion zu einer kostengĂŒnstigen Alternative zu metallischen Werkstoffen. Die komplexe mikroskopische Struktur von kurzfaserverstĂ€rkten Polymeren gestaltet deren experimentelle Charakterisierung jedoch schwierig und zeitintensiv. Besonders die Auslegung von kurzfaserverstĂ€rkten Bauteilen im Hinblick auf deren Langzeitverhalten, wie deren Lebensdauer unter zyklischer Belastung oder Kriechbelastung ist eine komplexe Aufgabe, denn das mechanische Verhalten dieser Bauteile ist von den komplexen morphologischen Parametern der Mikrostruktur abhĂ€ngig. Eine konventionelle Simulation ohne BerĂŒcksichtigung der durch die lokale Mikrostruktur bedingten Materialeigenschaften auf rein makroskopischer Skala ist in vielen Anwendungen daher nicht ausreichend. Eine Multiskalensimulation von kurzfaserverstĂ€rkten Bauteilen ist deshalb notwendig, um das Materialverhalten dieser Bauteile korrekt vorherzusagen und somit deren experimentelle Charakterisierung zu unterstĂŒtzen. In der vorliegenden Arbeit wird in Kapitel 3 eine effiziente datenbasierte Multiskalen-Methode vorgestellt, welche es ermöglicht, den Einfluss der Mikrostruktur in der Bauteilsimulation zu berĂŒcksichtigen. HauptsĂ€chlich wird hierbei auf den Einfluss des Faserorientierungszustandes eingegangen. Um die Multiskalensimulation von realen Bauteilen aus der Industrie zu ermöglichen, wird in dieser Arbeit auf effektive bzw. reduzierte Modelle zurĂŒckgegriffen. Diese Multiskalen-Methode besteht aus zwei Schritten. Zuerst werden fĂŒr vorgegebene FaserorientierungszustĂ€nde effektive Modelle generiert. In dieser Arbeit erfolgt dies mittels auf der schnellen Fouriertransformation (FFT) basierten numerischer Homogenisierungsmethoden, welche sich als besonders geeignet fĂŒr die Simulation von kurzfaserverstĂ€rkten Polymeren zeigt. Aufgrund ihrer Effizienz ermöglicht es diese numerische Homogenisierungsmethode, das Randwertproblem auf der Mikroskala fĂŒr große Volumenelemente schnell zu lösen. In Kapitel 4 wird mithilfe von Schaperys Kollokationsmethode zusammen mit der FFT-basierten Homogenisierung ein Effektivmodell zur Vorhersage des Kriechverhaltens von mit Kurzglasfasern verstĂ€rktem Polyamid identifiziert. Die Multiskalen-Methode wird fĂŒr diese von der Faserorientierung abhĂ€ngigen Effektivmodelle in einer makroskopischen FE-Simulation mit dem kommerziellen Finite Elemente (FE) Löser Abaqus fĂŒr ein Bauteil angewendet. In Kapitel 5 wird ein Modell zur Vorhersage der Steifigkeitsabnahme in kurzfaserverstĂ€rkten Polymeren unter zyklischer Belastung vorgestellt. Dieses Modell beruht auf einem einfachen isotropen nichtlokalen ErmĂŒdungsmodell im Matrixmaterial mit einer minimalen Anzahl von Parametern. Die EinflĂŒsse der numerischen Parameter und Materialparameter auf die effektive Steifigkeit werden in Kapitel 5 ausgiebig studiert. Zudem wird der Einfluss geometrischer MikrostrukturgrĂ¶ĂŸen wie beispielsweise des Faservolumengehalts und der Faserorientierung untersucht. Aufgrund der speziellen Struktur dieses Modells wird durch eine Modellreduktion vom Galerkin-Typ ein reduziertes Modell identifiziert. Weiterhin wird dieses reduzierte Modell in einer makroskopischen FE-Simulation im Multiskalen-Rahmen angewendet.Short fiber reinforced polymers are of central importance in many industrial applications such as lightweight constructions. This is mainly due to their exceptional weight to stiffness ratio. The processing of these composite materials by injection molding to components with complex geometries makes them a cost-efficient alternative to metallic materials, primarily in large-scale production. However, the complex microstructure of short fiber reinforced polymers makes their experimental characterization difficult and time consuming. Especially the design of short fiber reinforced components with regard to their long-term behavior, such as their lifetime under cyclic loading or creep, is a complex task. The mechanical behavior of these components depends on the complex morphological parameters of the underlying microstructures. In many applications a conventional simulation on the macroscopic scale without consideration of the material properties caused by the underlying microstructures is therefore not sufficient. A multi-scale simulation of short fiber reinforced components is necessary to precisely predict the material behavior of these components and thus to support their experimental characterization. In chapter 3 of the present work, an efficient data-based multi-scale method is presented, which takes into account the influence of the microstructure in component-scale simulations. In order to enable the multi-scale simulation of components of industrially relevant sizes, effective or reduced models are used in this thesis. The multi-scale approach consists of two steps. Firstly, effective models are generated for given fiber orientation states. In this thesis fast Fourier transform (FFT) based numerical homogenization methods are used for this purpose. These methods are particularly suitable for the simulation of short fiber reinforced polymers. Due to its efficiency, the micro-scale boundary value problem can be solved quickly for large volume elements. In the second stage of the multi-scale method, the generated effective models are interpolated to predict the material response for a general fiber orientation state. In chapter 4, Schapery's collocation method together with FFT-based homogenization is used to identify an effective model for predicting the creep behavior of short glass fiber reinforced polyamide. The multi-scale method using these fiber orientation dependent effective models is applied in a macroscopic finite element (FE) simulation, where the commercial FE-solver Abaqus is used on the component-scale. In chapter 5, a model for the prediction of the stiffness degradation in short fiber reinforced polymers under cyclic loading is presented. This model is based on a simple isotropic non-local fatigue model for the matrix material with a very small number of parameters. The influence of the numerical and material parameters on the effective stiffness is studied extensively in chapter 5. Furthermore, the influence of morphological properties, such as fiber volume content and fiber orientation, is investigated. Due to the special structure of this model, a reduced order model is identified by Galerkin-type model order reduction. Moreover, this reduced model is applied in a macroscopic FE-simulation within the multi-scale framework

    A computational multi-scale model for the stiffness degradation of short-fiber reinforced plastics subjected to fatigue loading

    No full text
    In this work, we investigate a model for the anisotropic and loading-direction dependent stiffness degradation of short-fiber reinforced thermoplastics subjected to high-cycle fatigue loading. Based upon the variational setting of generalized standard materials, we model the stiffness degradation of the matrix in cycle space by a simple isotropic fatigue-damage model with minimum number of model parameters, and consider the fibers to be linear elastic. The stiffness degradation upon cyclic loading is determined, for fixed damage state, by standard linear elastic homogenization. We thoroughly investigate the influence of the involved numerical and material parameters on the effective stiffness degradation of short-fiber reinforced volume elements, and also pay close attention on the dependence on geometric parameters of the composite like fiber-volume fraction and the fiber-orientation state

    A space-time upscaling technique for modeling high-cycle fatigue-damage of short-fiber reinforced composites

    Get PDF
    Characterizing short-fiber reinforced polymers under high-cycle fatigue loading is a tedious experimental task. To reduce the necessary experiments to a minimum, we introduce a computational strategy involving a mean-stress dependent fatigue-damage model for the stiffness degradation in short-fiber reinforced polymers. The key challenge in these materials is their inherent anisotropy which makes the necessary mechanical characterization process rather time-intensive, in particular for long-time experiments required for fatigue tests. Computational multiscale approaches may reduce the necessary mechanical tests to a bare minimum, offering significant savings in expense. We propose a mean-stress sensitive model to simulate the stiffness degradation in short-fiber reinforced composites subjected to fatigue loading. We start with a model formulated in time space and provide a multiple-set scale-bridging approach to arrive at a computationally efficient effective model. For a start, we describe a high-accuracy cycle-jump technique which permits us to simulate a large number of cycles, required for high-cycle fatigue. In a second step, we apply a model-order reduction in space to arrive at an effective model on component scale. Finally, we rely upon a fiber-orientation interpolation technique to produce an effective material model which covers all relevant fiber-orientation states throughout the component. Our approach utilizes a recently introduced compliance-based damage model for describing the stiffness degradation of the matrix material. We demonstrate the capability of the computational multiscale model to reproduce the stiffness degradation in fatigue experiments for different orientations, stress amplitudes, stress ratios between R = −1 and R = 0 and geometries with different notches
    corecore