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Abstract For short fiber reinforced plastic parts the local
fiber orientation has a strong influence on the mechanical
properties. To enable multiscale computations using surro-
gate models we advocate a two-step identification strategy.
Firstly, for a number of sample orientations an effective
model is derived by numerical methods available in the lit-
erature. Secondly, to cover a general orientation state, these
effective models are interpolated. In this article we develop
a novel and effective strategy to carry out this interpolation.
Firstly, taking into account symmetry arguments, we reduce
the fiber orientation phase space to a triangle in R

2 . For an
associated triangulation of this triangle we furnish each node
with an surrogate model. Then, we use linear interpolation
on the fiber orientation triangle to equip each fiber orienta-
tion state with an effective stress. The proposed approach is
quite general, and works for any physically nonlinear con-
stitutive law on the micro-scale, as long as surrogate models
for single fiber orientation states can be extracted. To demon-
strate the capabilities of our schemewe study the viscoelastic
creep behavior of short glass fiber reinforced PA66, and
use Schapery’s collocation method together with FFT-based
computational homogenization to derive single orientation
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state effective models. We discuss the efficient implemen-
tation of our method, and present results of a component
scale computation on a benchmark component by using
ABAQUS ®.
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1 Introduction

1.1 State of the art

Composite materials are frequently used in engineering
applications. However, the difference in sizes between the
reinforcements and the parts generally prohibits a finite ele-
ment analysis of the component where the underlying mesh
resolves the heterogeneities. It is common in engineering
practice to overcome this problem by resorting to effective
models which characterize the composite’s behavior on the
component scale.

To identify these models, experimental methods are sup-
ported bymean field and computational upscaling techniques
(cf. Zaoui [61] andMatouš et al. [35] for respective surveys),
mathematically formalized by the theory of homogenization
[6].

For nonlinear material behavior or large differences in
the elastic properties of the constituents, numerical meth-
ods resolving the microstructure on representative volume
elements (RVEs) for the mechanical behavior under con-
siderations [28] are often the only accurate option, and a
variety of numerical approaches specialized to homogeniza-
tion problems have been developed [2,5,40].
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Fig. 1 Injection molded quick release buckle socket: injection points, finite element mesh, and fiber orientation distribution (see Fig. 3 for the
color coding). a Injection points and finite element mesh. b Fiber orientation (bottom view). c Fiber orientation (side view)
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Fig. 2 The fiber orientation reference triangle, showing the two largest
principal eigenvalues of the fiber orientation tensor A. The extreme ori-
entations are marked in cyan (isotropic), magenta (unidirectional) and

yellow (planar), whereas the intermediate orientation states arise from
combinations of the colors in CMY format, s.t. the center of mass of
the triangle is white. (Color figure online)

Solving two-scale problems with nested volume element
problems, known as FE2 analysis or heterogeneous mul-
tiscale method [17], is limited by their formidable size—
despite impressive computational results like in Mosby–
Matouš [38]. The micro-mechanical problems under con-
sideration, however, share the same geometry, but involve
different macroscopic loading conditions. Thus, a huge
amount of very similar problems is solved. Based on this
observation a variety of acceleration techniques have been
developed, among them reduced order models [9,55,59],
the (non-uniform) transformation field analysis [16,20,36],
response surfacemodels [4,12,46,50,60] andmachine learn-
ing approaches like neural networks [21,24,33,34,52] giving
rise to accurate surrogate models with significantly lower
computational demands.

Surrogate models can than be used in a database concept
[49,51].

1.2 Problem setting

Short fiber reinforced composite parts constitute an example
for multiscale problems where the parameters determining
themicrostructuremay vary continuously on themacro scale.

For illustration, Fig. 1 shows a quick release buckle socket1

for which an injection molding simulation was conducted
(see Sect. 4 for the exact simulation parameters). The col-
ors indicate the occurring fiber orientation (FO) see Fig. 2:
cyan corresponds to isotropic, yellow to planar and magenta
to a unidirectional, i.e. an aligned, fiber orientation state. We
see that large parts of the socket exhibit a rather aligned ori-
entation. Yet, there are distinguished parts, like the flat stern
where the orientation ismostly planar. Furthermore, there are
regions where the melt fronts have collided (welding lines).
Capturing the mechanical behavior of these regions is par-
ticularly important, as they correspond to weak spots of the
structure.

The finite element mesh, cf. Fig. 1a, consists of more than
300,000 elements. This large number of elements is nec-
essary for resolving the component. Notice that the fiber
orientation is varying continuously, and large parts of the
component are characterized by very similar fiber orientation
states. Thus, it appears natural to employ an interpolation
ansatz to cover the different orientations. Unfortunately,
using representative volume elements (RVEs) for computing
the effective mechanical response is, at first sight, incompat-

1 Source for the CAD geometry: https://grabcad.com/library/quick-
release-buckle-19mm.
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ible with an interpolation scheme: the volume element does
not depend continuously on the fiber orientation! The situa-
tion is even more delicate: one and the same fiber orientation
state might be represented by two completely different vol-
ume elements. Thus, the association {FO} �→ {RVE} is not
even a well-defined function. Similar problems arise if sur-
rogate models of different type, in particular with different
internal variables, are used for different orientations. This sit-
uation is characteristic for models obtained by model order
reduction, for instance.

In this work, we propose a work-around for these prob-
lems, based on the insight that the effective stress is a
well-defined function of the fiber orientation (and the applied
load history).

1.3 Our contribution and organization of this article

Within the framework of generalized standard materials
[23,25] we propose a method to interpolate arbitrary effec-
tivemodels. Supposewehave a collection ofmicrostructures,
indexed by {1, . . . , M}. For everymicrostructure whose con-
stituents are generalized standard materials, the effective
mechanical behavior can be described by a generalized stan-
dard material, see Suquet [48]. Thus, we obtain a free energy
Wi and a dissipation potential Φi for each index i . Notice,
however, that Φi depends also on an internal variable vector
Qi , which lives in some space Xi .

Let the state to be interpolated be described by weights
s1, . . . , sM forming a convex combination, i.e. satisfying

si ≥ 0,
M∑

i=1

si = 1,

the interpolated free energy and dissipation potential read

W (E, Q) =
M∑

i=1

siWi (E, Qi )

and

Φ(Q̇) =
M∑

i=1

siΦi (Q̇i ),

where E denotes the applied macroscopic strain and Q =
(Q1, . . . , QM ) collects all internal variables. This construc-
tion naturally preserves convexity (and continuity) properties
of the potentials, and yields the desired evolution equa-
tions with effective properties continuously varying between
the microstructures. For a typical simplicial triangulation in
the d-dimensional space describing the microstructure, each
microstructure to be interpolated is surrounded by d + 1
nodes. Consequently, only d + 1 internal variables need to

be tracked instead of the full M . This property contrasts
with othermethods, for instance themethod of pseudo-grains
[13,15].

In the context of short fiber reinforced composites we
apply the proposed method to the interpolation of fiber rein-
forced structures described by the fiber orientation tensor of
second order, see Sect. 2, corresponding—if objectivity is
accounted for—to a two-dimensional configuration space.

To study the creeping behavior of short fiber reinforced
composites, we equip the matrix with a Burgers model for
PA66 [57,58], use FFT-based computational homogeniza-
tion [39,40] to carry out the microstructure computations
and identify a surrogate model by Schapery’s collocation
method [43], see Sect. 3. Last but not least we check the
accuracy of the fiber orientation interpolation and investigate
the behavior of the quick release buckle socket of Fig. 1, see
Sect. 4. Care has been taken to ensure applicability of the
scheme in state of the art engineering computations. For the
micromechanical simulation, we use the Fraunhofer ITWM
software FeelMath [18], distributed as the ElastoDictmodule
of GeoDict [22]. The database containing the different effec-
tive models is filled by a script written in Python [42], and
can be accessed by a user-defined material function, which
is compatible with the UMAT interface of ABAQUS [1].

2 Fiber orientation interpolation

2.1 The fiber orientation tensor

Short fiber reinforced composites with fibers of equal length
are locally characterized by the direction of their fiber rein-
forcements. Suppose a given volume V comprises a number
of fibers with directions p1, . . . , pN ∈ S2, where S2 denotes
the the unit sphere, N can be very large. Then, the Advani–
Tucker (second order) fiber orientation tensor A [3] computes
via

A = 1

N

N∑

i=1

pi ⊗ pi . (1)

The fiber orientation tensor A is a symmetric positive
semidefinite 3 × 3 tensor with tr (A) = 1 and represents
a compact measure of the fiber orientation distribution in the
volume V . For instance, A is degenerate precisely if all fibers
{pi }Ni=1 are contained in a single great circle, i.e. if the fiber
orientation is planar. Furthermore, A is of the form A = p⊗p
for a direction p if and only if all fibers pi point in direction
p (or, equivalently, in direction −p).

A carries a limited amount of information, as it com-
prises only five independent degrees of freedom. Still, it
is the principal quantity of interest for commercial injec-
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tion and compression molding simulations, as it may vary
for every Gauss point of the FEM Mesh for processed part
and plausible higher order momenta are recovered by clo-
sure approximations (see Montgomery-Smith et al. [37] for
a recent overview). For extensions to higher moment tensors
compare Jack–Smith [29]. A principal component analysis of
A reveals further information on the fiber orientation. Spec-
trally decomposing A leads to the expression

Λ = RART , Λ = diag(λ1, λ2, λ3) (2)

with an orthogonal matrix R and a diagonal matrix Λ with
sorted eigenvalues λ1 ≥ λ2 ≥ λ3. The columns r1, r2 and r3
of R represent the principal fiber directions, and the eigenval-
ues λi describe the probability of finding fibers in direction
ri , as the λi are non-negative and sum to one. In particular, up
to an orthogonal transformation, the fiber orientation tensor
A can be described by by two positive real numbers λ1 and
λ2 satisfying the two inequalities

1
3 ≤ λ1 ≤ 1 and 1 − 2λ1 ≤ λ2 ≤ λ1, (3)

which geometrically corresponds to a planar triangle, cf.
Fig. 2.

2.2 The framework of generalized standard materials

For the constitutivemodellingwe rely upon the two-potential
framework of the generalized standardmaterials [23,25]. The
constitutive relationships are derived from two thermody-
namic potentials, the Helmholtz free energy density w(ε, q)

and the dissipation potentialφ(q̇)which are convex functions
of the state variables, the infinitesimal strain ε and other inter-
nal variables q, and their time-derivative. The free energy w

is the energy available in the system to trigger its evolution,
whereas φ describes the evolution of the irreversible mecha-
nisms.

In a first step, the thermodynamic forces stored in the
materials are derived via

σ = ∂w

∂ ε
(ε, q) and Q = −∂w

∂q
(ε, q).

Then, complementary laws relate the rate of the state vari-
ables and the forces acting upon them, i.e.

Q = ∂φ

∂q̇
(q̇).

Combining these formulae leads to the equations

σ = ∂w

∂ ε
(ε, q) and

∂w

∂q
(ε, q) + ∂φ

∂q̇
(q̇) = 0. (4)

2.3 Effective properties of short fiber reinforced plastics
and the invariance principle

From the work of Suquet [47,48] it is known that the
macroscopic response of a microstructure with generalized
standard material constituents is described by a generalized
standardmaterial, possiblywith an infinite number of internal
variables. Thus, we assume, that for every fiber orientation
tensor A we have an effective free energy WA, depending
on the macroscopic strain E and a vector of internal vari-
ables QA, which, for simplicity of exposition, we assume to
be a collection of two-tensors, and an effective dissipation
potential ΦA, depending on the rate of change of the internal
variables Q̇ A. Thus, the macroscopic constitutive relations
according to (4) read

Σ = ∂WA

∂E
(E, QA) (5)

and

∂WA

∂QA
(E, QA) + ∂ΦA

∂ Q̇ A
(Q̇ A) = 0, (6)

where Σ is the macroscopic stress.
However, the material laws for different fiber orientation

states are not independent. Due to objectivity and material
frame indifference, both the free energy and the dissipa-
tion potential are invariant w.r.t. orthogonal transformations.
More precisely, for any fiber orientation A, strain E , internal
variable QA and orthogonal transformation R we have the
equalities

WA(E, QA) = WRART (RERT , QRART ) (7)

and

ΦA(Q̇ A) = ΦRART (Q̇RART ), (8)

where we used that the fiber orientation is static, Ȧ = 0.
Differentiating yields the equations

Σ = RT
[
∂WRART

∂E
(RERT , QRART )

]
R (9)

and

∂WRART

∂QRART

(
RERT , QRART

)
+ ∂ΦRART

∂ Q̇RART
(Q̇RART ) = 0,

(10)

which are equivalent to (5) and (6) . The latter observations
are illustrated on a unidirectional structure in Fig. 4. To com-
pute the effective stress of the unidirectional structure on the
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left, which can be directed arbitrarily, we can use a unidirec-
tional structure with a fixed direction (on the right), provided
we transform the applied strain as well as the internal vari-
ables (not shown) accordingly, and do not forget to transform
the effective stress back to the reference orientation.

Thus, to derive effective models for all fiber orientation
states A it is sufficient to consider the fiber orientations Λ =
diag(λ1, λ2, 1−λ1−λ2)with λ1, λ2 lying in the triangle (3).
Effective constitutive laws for general orientation tensors are
obtained by subsequent orthogonal transformations.

More precisely, suppose the family {WΛ,ΦΛ}Λ is given,
and let A be arbitrary. Spectrally decomposing A = RTΛR
leads, for macroscopic strain E , to the constitutive law

Σ = RT
[
∂WΛ

∂E

(
RERT , QΛ

)]
R,

∂WΛ

∂QΛ

(
RERT , QΛ

)
+ ∂ΦΛ

∂ Q̇Λ

(
Q̇Λ

) = 0.
(11)

The free energy, the dissipation potential and the internal
variables live in the diagonalized configuration,whereas both
stresses and strains share the frame of the fiber orientation
tensor A.

2.4 Fiber orientation interpolation

In the preceding section we have reduced the problem of
finding the effective response of a fiber reinforced composite
from a five-dimensional problem, corresponding to the full
fiber orientation tensor A, to a two-dimensional problem,
taking into account the fiber orientation triangle. Still, this
triangle consists of an infinite number of points. From phys-
ical intuition it is clear that for fixed applied strain the free
energy in equilibrium is continuous as a function of the ori-
entation. Thus, if we discretize the fiber orientation triangle
of Fig. 2 by a sufficient fine mesh, and associate a consti-
tutive law (WΛ,ΦΛ) to each nodal point Λ of the mesh, a
subsequent interpolation should capture all effective materi-
als law with sufficient accuracy, provided the triangulation is
fine enough, see Fig. 3.

However, care has to be taken as to which quantities can
be interpolated. In general, in contrast to macroscopic strains
and stresses, it does not make sense to interpolate inter-
nal variables, as they live on the current configuration (and
fiber orientation state). Thus, it is not clear how to trans-
fer them between different states. Even more striking is the
fact that upon discretization the number of internal variables
becomes finite, and might differ for distinct fiber orienta-
tions. A solution to this dilemma is the following. Suppose
Λ is a general fiber orientation state in the fiber orientation
triangle. For a given triangulation let Λ1, Λ2 and Λ3 be the
nodes of the triangle containing Λ, with constitutive laws{
WΛi , ΦΛi

}
i=1,2,3. For a non-degenerated triangle there is a
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Fig. 3 A triangulation of the fiber orientation triangle. For a given
orientation state (orange), the containing triangle is augmented, with
nodes Λ1, Λ2 and Λ3. The coloring encodes the orientation. (Color
figure online)

representation as convex linear combination

Λ = s1Λ1 + s2Λ2 + s3Λ3 (12)

with a unique real triple (s1, s2, s3) satisfying

si ≥ 0, (i = 1, 2, 3) and s1 + s2 + s3 = 1.

We associate to Λ the free energy

ŴΛ(E, QΛ1 , QΛ2 , QΛ3) =
3∑

i=1

siWΛi (E, QΛi ) (13)

and the corresponding dissipation potential

Φ̂Λ(Q̇Λ1 , Q̇Λ2 , Q̇Λ3) =
3∑

i=1

siΦΛi (Q̇Λi ). (14)

These two potentials include three sets of internal vari-
ables, and are continuous in Λ through the (s1, s2, s3)-
coefficients (12). Our construction preserves the convexity
of both the free energies and the dissipation potentials.

Differentiating (14) according to (4) yields the constitutive
law

Σ =
3∑

i=1

si
∂WΛi

∂E
(E, QΛi ),

∂WΛi

∂QΛi

(E, QΛi ) + ∂ΦΛi

∂ Q̇Λi

(Q̇Λi ) = 0, i = 1, 2, 3.

(15)

Thus, the nodal stresses are interpolated, and the nodal
internal variables evolve independently of each other. Of
course, if si = 0 for some i = 1, 2, 3, the evolution for
QΛi becomes irrelevant for the evaluation of the stress. In
particular, if Λ = Λi for some i = 1, 2, 3, we consistently
recover the constitutive equations for Λi .
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Fig. 4 Illustration of the
invariance principle: rotating
both the fibers and the loading
leads to a rotated stress
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loading linear interpolation using fiber orientation database stress response

Fig. 5 Conceptional illustration of the fiber orientation interpolation
method for the orientations of Fig. 3. The applied loading gives rise to
three stress responses corresponding to the nodes of the triangle. The

stress responses are averaged according to the convex coordinates of the
orange orientation, giving rise to the macroscopic stress. (Color figure
online)

In this formulation, three sets of internal variables are
stored. Each node receives the same strain, but uses its own
constitutive law to produce a stress, and the evolution of
the internal variables depends on the node only. The three
stresses are averaged according to the convex representation
(12), which is meaningful, see Fig. 5.

We have presented the method for a single triangle of
the triangulation only. However, the method can be inter-
preted for the whole triangulation in a similar fashion, where
only the adjacent nodal constitutive laws are active. Notice at
this point that for every orientation only three material laws
are required, regardless of the number of nodes used for the
triangulation of the fiber orientation triangle. This property
contrasts starkly with the method of pseudo-grains [13,15],
which requires the full number of grains to be evaluated for
calculating the effective response of the composite.

The fiber orientation interpolation method can be summa-
rized as follows.

1. Offline phase: triangulate the fiber orientation triangle,
cf. Fig. 3, and compute an effective model for each node
in the triangulation

2. Online phase: for each macroscopic Gauss point and
given strain E

– Spectrally decompose the local fiber orientation ten-
sor A = RTΛR, cf. (2)

– Determine the local triangle T such that Λ ∈
T = conv{Λ1,Λ2,Λ3} with nodes Λ1,Λ2,Λ3 and
weights s1, s2, s3, cf. (12)

– Transform the strain E �→ RERT , compute the local
stressΣi and update the internal variable QΛi at node
Λi

– Return the effective stress Σ = RT
[∑3

i=1 siΣi

]
R

– Return the effective consistent tangent matrix C =
R−1 :

[∑3
i=1 siCi

]
: R, where Ci is the consistent

tangent at Σi in the transformed orientation, R is
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the action of R on two-tensors Ri jkl = Rik R jl , and
R−1

i jkl = Rki Rl j

In this work, the offline phase is implemented in Python
[42]: for a given triangulation of the fiber orientation tri-
angle, the micromechanical solver (see Sect. 3.3) is called
for each node of the triangulation and its results are used to
identify the parameters of a surrogate model. As output, for
each element in the fiber orientation triangulation, an ordered
set of nodes with corresponding ABAQUS [1] UMATs and
identified parameters for the UMAT are stored in an XML
file. Once the component to be simulated is chosen, for each
element of the component’s finite element mesh, the eigen-
decomposition of the fiber orientation is computed, the Euler
angles of the rotation matrix, the weights associated to the
interpolation (12) and the corresponding element of the fiber
orientation triangle are determined and stored.

For the online ABAQUS computation a dummy UMAT is
used, which takes Euler angles, weights and the fiber orienta-
tion element as input parameters, and calls the three UMATs
associated to the adjacent nodes of the fiber orientation tri-
angle.

3 Identifying a viscoelastic surrogate model using
FFT-based computational homogenization and
Schapery’s collocation method

To test the orientation interpolation technique we consider
a fiber reinforced polymer with linearly viscoelastic matrix
and linear elastic reinforcements. Linear viscoelasticity has
the advantage that on the one hand the derivation of effective
models is comparatively well-understood, but on the other
hand due to the dependence on the material history complex
constitutive behavior can be observed.

3.1 Generating fiber-filled volume elements

To generate periodic volume elements with prescribed fiber
orientation and volume fraction we rely upon the Sequen-
tial Addition and Migration (SAM) method [44]. As input
parameters, the fiber volume fraction φ, the second order
fiber orientation tensor A, the fiber length L , the fiber diam-
eter D and the edge length Lx (= Ly = Lz) of the cubical
volume element needs to be specified. In a preliminary step,
the required number N of fibers is calculated, s.t. the fiber
volume fractionφ ismatchedwith highest precision. Further-
more, the fourth order fiber orientation tensorA is computed
from the A tensor with the help of the exact closure approx-
imation [37].

In the first step of SAM, N overlapping cylindrical fibers
are randomly placed in the volume. Then, in the second step,
the fibers are displaced and rotated, s.t. the overlap is removed

Fig. 6 Rheological diagram of
Burgers’ model

σ

EM

EK
ηK

ηM

σ

and the prescribed fiber orientation tensor A is matched to
prescribed accuracy (typically 10−5 absolute error in L2 of
the Voigt matrices).

The SAM algorithm is unable to generate purely planar
fiber orientation states, i.e. (up to orthogonal transformation)
states corresponding to a fiber orientation tensor of the form

A = diag(λ1, λ2, 0).

However, these states do not appear in practice for indus-
trial fiber volume fractions. Indeed, suppose a collection of
fibers with directions p1, . . . , pN is given. This system is
purely planar in the x–y-plane precisely if pi · ez = 0 for all
i = 1, . . . , N , i.e. all fibers have vanishing z-component. In
particular, no scatter is allowed in the z-direction.

For the study at hand, we force λ3 to be at least 0.01.
These orientation tensors are sufficiently close to planar for
practical studies, and can easily be generated by the SAM
method.

3.2 The Burgers model for the viscoelastic behavior of
the matrix

As matrix material we consider a commercial polyamide 6.6
(PA66, DuPont Zytel 101), for which experimental creep
curves and fitted viscoelastic model parameters are available
in the literature, see Yang et al. [57,58].

The Burgers model, a classic in the literature [53], is
widely used for the linear viscoelastic behavior of ideal ther-
moplastics. The rheological diagram is shown in Fig. 6 with
a Maxwell and a Kelvin unit connected in series. The Burg-
ers model exhibits a stationary creep rate after relaxation of
the Kelvin element, includes an irreversible part of the vis-
cous strain after unloading and the stress in a relaxation test
approaches 0 as t ↗ ∞.

According to Burgers’ model, for an applied tensile stress
of σ0, the tensile strain computes as

ε(t) = σ0

[
1

EM
+ 1

EK
(1 − e−t/τ ) + t

ηM

]
, (16)
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where EM and ηM are the Young’s modulus and viscosity of
theMaxwell spring anddashpot, respectively, and EK andηK

are the Young’s modulus and viscosity of the Kelvin spring
and dashpot, respectively, whereas τ = ηK /EK represents
the retardation time.

Reciprocally, for an applied tensile strain of ε0, the tensile
stress attains the form [19]

σ(t) = ε0

A

[
(q1 − q2r1)e

−r1t − (q1 − q2r2)e
−r2t

]

with

p1 = ηM

EM
+ ηM

EK
+ τ, p2 = ηM

EMτ
,

q1 = ηM , q2 = ηMτ, r1/2 = p1 ∓ A

2p2
,

A =
√
p21 − 4p2.

Using the latter representation it is not difficult to exhibit
Burgers’ model as a generalized standard material. However,
for practical purposes the creep function representation (16)
is advantageous. Following Lai–Bakker [32] and Woldeki-
dan [56] we obtain a 3D model by assuming Poisson’s ratio
ν = 0.38 to be constant over the complete time history. This
is a common assumption for glassy or semi-crystalline ther-
moplastic polymers as the investigated matrix material. We
arrive at the hereditary integral formulation

ε(t) =
∫ t

0
J(t − s) : σ̇ (s) ds,

relating the stress rate σ̇ to the strain ε using the viscoelastic
intensification tensor

J(t) = D0 + tF + D1(1 − e−t/τ ) (17)

for t ≥ 0 and zero otherwise. Here,F denotes the creep com-
pliance and D0 is the instantaneous compliance. If F = 0,
then D0 + D1 corresponds to the relaxed (elastic) compli-
ance. In formulae, the action of the three compliances on a
test stress S read

D0 : S = 1 + ν

EM
S − ν

EM
tr(S) Id,

D1 : S = 1 + ν

EK
S − ν

EK
tr(S) Id,

F : S = 1 + ν

ηM
S − ν

ηM
tr(S) Id,

where Id is the 3 × 3 identity matrix.
The chosen material parameters are summarized in Table

1, corresponding to the σ0 = 20 MPa and T = 23 ◦C fitted
parameters of Yang et al. [58].

Table 1 Viscoelastic matrix material parameters [58] for Burgers’
model

EM [MPa] EK [MPa] ηM [GPah] τ [h]

3709 16.617 889 14.2

3.3 Computational homogenization of linear
viscoelasticity

Following Hashin [26,27] suppose Y ⊆ R3 is a cuboid (for
periodic boundary conditions) and let a heterogeneous linear
viscoelastic medium be given in terms of the local relaxation
function

J : Y × [0,∞) −→ R3 ⊗ R3 ⊗ R3 ⊗ R3,

s.t. for every (x, t) ∈ Y × [0,∞), J(x, t) has minor as
well as major symmetries and is coercive. To homogenize,
i.e. to compute effective linear viscoelastic properties, for
given macroscopic stress history Σ : [0,∞) → Sym(3),
where Sym(3) denotes the linear space of symmetric 3 × 3
matrices, we seek the local stress field σ : Y × [0,∞) →
Sym(3), the periodic local displacement fluctuation field
u : Y × [0,∞) → R3 and the macroscopic strain history
E : [0,∞) → Sym(3), s.t. the following equations are sat-
isfied for every t ∈ [0,∞):

– balance of linear momentum

div σ(t) = 0, (18)

– compatibility

ε(x, t) = E(t) + ∇su(x, t) for every x ∈ Y, (19)

– linear viscoelastic material law in relaxation function
form

ε(x, t) =
∫ t

0
J(x, t − s) : σ̇ (x, s) ds for everyx ∈ Y,

(20)

– fixed macroscopic stress

〈σ(t)〉Y = Σ(t). (21)

Here, ε is the local strain field, we write σ(t) ≡ σ(·, t) for
the sake of notational clarity, ∇s denotes the symmetrized
gradient, and 〈·〉Y stands for the averaging operator over Y.
Without loss of generality, 〈u(t)〉Y = 0 can be enforced for
every t ≥ 0.

The quantity of principal interest is themacroscopic strain
field history E . Due to the linearity and the time-invariance
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of the mapping Σ �→ E , there is a homogenized relaxation
function Jhom : [0,∞) → R3 ⊗ R3 ⊗ R3 ⊗ R3 with both
minor and major symmetries, s.t. we can write

E(t) =
∫ t

0
Jhom(t − s) : Σ̇(s) ds. (22)

Indeed, Jhom arises by choosing

Σ(t) =
{
0, t < 0
Σ0, t ≥ 0

for six linearly independent Σ0 ∈ Sym(d), as the corre-
sponding macroscopic strain fields satisfy

E(t) = Jhom(t) : Σ0

Thus, the effective creeping behavior completely deter-
mines the full linear viscoelastic effective behavior.

We solve (18)–(21) in the standard way [30] by resorting
to a time discretization 0 = t0 < t1 < t2 < · · · , s.t., for
every time step, (18)–(21) becomes a linear elastic problem
with eigenstrain, i.e. we seek, suppressing time indices, a
strain E ∈ Sym(d) and a periodic displacement fluctuation
u : Y → R3 with zero mean, s.t. the equations

div σ = 0,

E + ∇su = Dtan : σ + α,

〈σ 〉Y = Σ,

(23)

are satisfied, where Dtan is a tangential compliance tensor
and α stands for an eigenstrain depending on quantities com-
puted at the previous time step. (23) constitutes a standard
linear elastic homogenization problem with eigenstress and
stress “boundary conditions”, for which a variety of solution
techniques are available.

FFT-based computational homogenization [39,40] consti-
tutes our method of choice. For this method, a discretization
on a regular grid or mesh decomposing Y is chosen. Due to
the regularity of the grid and the periodic boundary condi-
tions, problems of the form (23) with homogeneousDtan can
be solved directly in terms of the discrete Fourier transform.
The Operator of this auxiliary homogeneous problem serves
to precondition the linear system (23).

For the problem at hand, we choose a discretization
on a staggered grid [45], the stress-based formulation of
Bhattacharya–Suquet [11] and the conjugate gradientmethod
[62] for the resolution of (23). All mentioned methods are
integrated into the Fraunhofer ITWM C++ code FeelMath
[18].

3.4 On the resolution and the RVE size necessary for the
precomputations

In this section we investigate the necessary resolution and
representative volume element (RVE) size for solving (18)–
(21), or, equivalently, (23), to engineering accuracy.
We consider short E-glass fiber reinforcements with elastic
parameters E = 72 GPa and ν = 0.22, length of 200 µm,
aspect ratio ra = 20 and fiber volume fraction φ ≈ 17%,
which corresponds to afibermass fraction of 30% in thePA66
matrix with the mechanical properties described in Sect. 3.2.
Recall from (17) that for creeping with stress σ0, Burgers’
model predicts a strain

ε(t) = D0 : σ0 + tF : σ0 + (1 − et/τ )D1 : σ0 (24)

in the matrix, whereas the glass fibers behave linear elastic
(in particular, time independent)

ε = Dglass : σ0. (25)

To investigate the viscoelastic behavior, we consider two
extreme cases:

Case 1 The instantaneous response, corresponding to t =
0, i.e. (24) becomes simply the linear elastic rela-
tionship ε = D0 : σ0

Case 2 The creep rate at infinity. Differentiating (24) in
time yields

ε̇(t) = F : σ0 + τ−1e−t/τD1 : σ0, (26)

i.e., limt→∞ ε̇(t) = F : σ0, whereas ε̇ = 0 in the
fibers. To study the creep rate at infinity, we study
the linear elastic problem with local compliance

D(x) =
{
F, x in the matrix,
0, in the fiber.

As the fibers are rigid, this problem is much more
difficult to solve than the instantaneous elastic
problem.

As a first test we study the resolution necessary to obtain
accurate effective properties, both for the instantaneous elas-
tic case and the creep rate at infinity. For this purpose, we
consider cubical elements with an edge length of Lx =
Ly = Lz = 600 µm, corresponding to thrice the fiber length
L = 200µm. We choose the extreme orientations, i.e. unidi-
rectional (ud), planar isotropic and (3D) isotropic.

We have chosen to check four different resolutions, mea-
sured in voxels per fiber diameter. Recall that the fibers have
a diameter of 10µm, so that 5 voxels per diameter correspond
to a voxel edge length of 2µm, i.e. the (600µm)3 volume is
discretized by 3003 elements. Accordingly, 10, 15 and 20
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Fig. 7 Relative error of the stiffness Chom and viscosityVhom for different resolutions. a Relative error of the stiffness Chom . b Relative error of
the viscosityVhom

voxels per diameter correspond to 6003, 9003 and 12003 ele-
ments, respectively.

For each of these resolutions, the homogenized instan-
taneous elastic tensor Chom was computed (Case 1). The
relative error in the Frobenius norm of the corresponding
Voigt matrices, measured relative to the highest resolution
12003, is shown in Fig. 7a. Even for the crudest resolution,
the relative error for all three considered orientations was
below 1%.

The same computation was carried out for the long-term,
i.e. viscous, response (Case 2). Upon replacing the strain rate
ε̇ by the strain ε in (26) the problem is formally equivalent
to an elasticity problem with rigid fibers and elastic matrix.
The computed homogenized elastic tensor for the equivalent
elastic problem is in fact a homogenizedviscous tensorVhom ,
and the relative errors of the results are plotted in Fig. 7b,
again relative to the highest resolution.

For the crudest resolution, the relative errors exceed 10%
for all three considered orientations. The highest error of
about 19.1% occurs for the planar fiber orientation state, and
the lowest error (11.7%) is reached for the isotropic orienta-
tion. Doubling the resolution decreases the error for all three
orientations below 2.5%. For 9003, the relative error is even
smaller than 1%.

We see that in contrast to the instantaneous elastic case
computing the long term viscous response requires a com-
paratively high resolution of 10 voxels per fiber diameter,
i.e. a resolution of 1µm. We fix the latter resolution for the
succeeding. Next we determine the size of a volume element
to be representative (see Bella and Otto [7] for recent math-
ematical findings in the context of linear elasticity) for the
homogenized viscoelastic response, see Sect. 3.3, measured

in terms of the fiber length L = 200µm. With the resolution
of 1µm, the investigated volume elements comprise 4003,
6003, 8003, 10003 and 12003 voxels. To get an impression
about the relative size of the volumes, compare Fig. 8, where
volume elements with isotropic fiber orientation are shown.
The number of fibers corresponding to each volume element
size is listed in Table 2.

To study the size of anRVE,we compute the effective elas-
tic/viscous tensors for the different sample sizes and compare
these to the result obtained for the largest sample Lx = 6×L .
It should be mentioned that the variance of different realiza-
tions for a fixed unit cell length is negligible, as both the fiber
volume fraction and the fourth order fiber orientation tensor
are fixed with high accuracy by the SAMmethod, cf. Schnei-
der [44]. Hence, only the systematic error is measured. For
the instantaneous elastic case, see Fig. 9a, the relative error
for all resolutions and orientations considered is well below
0.5%, and can be considered negligible. In particular, for the
elastic response, twice the fiber length is a sufficient edge
length for a representative volume element.

In the viscous case, see Fig. 9b, the relative errors are
about an order of magnitude larger than for the elastic case.
The unidirectional fiber orientation leads to the largest errors,
whereas the isotropic state induces the lowest errors, with the
planar case in between these extremes. For the smallest edge
length, the relative error is still comparatively large, with
about 4% for the unidirectional fiber orientation. We con-
sider an edge length of thrice the fiber length as sufficient,
since both the planar isotropic and isotropic fiber orientation
states lead to a relative error of about 1%, and the unidirec-
tional case is captured with < 2.5% relative error. Table 3
lists the number of iterations necessary for resolving the unit
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(a)
Lx = 2× L

(b)
Lx = 3× L

(c)
Lx = 4× L

(d)
Lx = 5× L

(e)

Lx = 6× L

Fig. 8 Volume elements with different edge lengths inside a maximal volume and isotropic fiber orientation tensor. a Lx = 2× L . b Lx = 3× L .
c Lx = 4 × L . d Lx = 5 × L . e Lx = 6 × L

Table 2 Number of fibers for different volume element sizes

Edge length 2 × L 3 × L 4 × L 5 × L 6 × L

Number of fibers 686 2298 5447 10,640 18,386

cell problems for different volume element sizes, both for
the elastic and the purely viscous response, measured as
the average of the six load cases. The dual formulation of
Bhattacharya–Suquet [10] was solved by the conjugate gra-
dient method up to a relative residual of 10−5. The iteration
countmainly depends on thematerial contrast, is almost inde-
pendent of the volume element size, but depends slightly on
the orientation. For the unidirectional state, a lower number
of iterations suffices compared to the planar and 3D isotropic

structures. The viscous computations increase the iteration
count almost by a factor of 20 compared to the elastic com-
putations.

3.5 Schapery’s collocation method

To obtain a surrogate model for the homogenized linear vis-
coelastic behavior of a heterogeneous Burgers medium we
rely upon Schapery’s collocation method [43]. Recall that
the heterogeneous linear viscoelastic material law reads, for
every microscopic point x ∈ Y ,

ε(x, t) =
∫ t

0
J(x, t − τ) : σ̇ (x, τ ) dτ, (27)
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Fig. 9 Relative error of the stiffnessChom and viscosityVhom for different volume element sizes. a Relative error of the stiffnessChom . b Relative
error of the viscosityVhom
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Table 3 Average number of iterations per load case to compute effec-
tive tensors for different volume element sizes

Volume element size

Orientation 2 × L 3 × L 4 × L 5 × L

(a) Stiffness

Isotropic 25.0 22.2 23.5 24.2

Unidirectional 19.5 19.5 19.5 19.5

Planar isotropic 19.7 19.8 21.2 20.8

(b) Viscosity

Isotropic 498.3 495.2 492.2 490.0

Unidirectional 461.3 454.8 451.2 450.7

Planar isotropic 494.8 486.3 486.5 485.0

where, for Burgers’ model, the creep tensor has the form

J(x, t) = D(x) + B(x) (1 − et/τ ) + F(x) t.

Consider, for some fixed b > 0 and a positive integer n,
the ansatz

Jcoll(t) := Dhom +
n∑

k=−n

Bhom
k (1 − e−b−k t/τ )

+ Fhom t,

(28)

where Dhom , Fhom and Bhom
k are possibly anisotropic

fourth-tensors to be determined. (28) encodes an instanta-
neous anisotropic elastic response via Dhom , an anisotropic
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Fig. 10 Frobenius norm of the creep strain, in uniaxial creep tests in main fiber direction for different fiber orientations and number of collocation
points. a Isotropic. b Unidirectional. c Planar isotropic
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Fig. 11 Maximal relative error
of the strain in uniaxial creep
simulations up to 104 h for
different numbers of collocation
points, loading directions and
fiber orientations
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Fig. 12 Runtimes for the three extreme fiber orientations per collocation point

anisotropic fluidityFhom , and a number of anisotropic relax-
ation tensors, connected to rescaled relaxation times bkτ ,
where b serves as a logarithmic base, and n limits the band-
width of relaxation times. Schapery considered formally
minimizing the total Frobenian square error

∫ t

0
‖Jcoll(t) − Jhom(t)‖2 dt −→ min (29)

among all (28) for fixed b and n. In a first step, Dhom and
Fhom are obtained by homogenizing D and F, respectively,
which correspond to the initial stiffness and the transient
creep fluidity. Then, for sl = b−l/τ (l = −n, . . . , n) the
2n + 1 compliance fields

D(x) + B(x)
1

1 + slτ
+ s−1

l F(x) (30)

are homogenized, giving rise to homogenized tensorsKhom
l .

Finally, the tensors Bhom
k are eliminated from the 2n + 1

tensor equations

Dhom +
n∑

k=−n

Bhom
k

1

1 + slτbk
+ Fhom/sl = Kl .

3.6 On the number of collocation points for Schapery’s
method

In this section we study the applicability of Schapery’s
method in our context.
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Fig. 13 Instantaneous orthotropic Young’s moduli for different fiber
orientations. a Young’s modulus surface for the discretized fiber orien-
tation triangle. b Young’s moduli plotted along the corners of the fiber

orientation triangle (piso, iso, ud corresponds to the planar isotropic,
isotropic, unidirectional fiber orientation)
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Fig. 14 Viscous orthotropic Young’s moduli for different fiber orien-
tations. a Young’s modulus surface for the discretized fiber orientation
triangle. bYoung’s moduli plotted along the corners of the fiber orienta-

tion triangle (piso, iso, ud corresponds to the planar isotropic, isotropic,
unidirectional fiber orientation)

With the previously established parameters, an RVE edge
length of three times the fiber length and a resolution of 1µm,
we have computed solutions to the Schapery problems (30)
for a different number of collocation points, ranging from 1
to 7, and the basis b = 10.

To assess the quality of Schapery’s method for different
collocation points, we have conducted a creep simulation
with 1 MPa stress applied in x-direction, with logarithmi-
cally distributed time steps up to 104 h. In Fig. 10 the creep
strains computed from Schapery’s model (28) are compared
to the full resolution computation for the three extreme ori-
entations.

For the isotropic fiber orientation state, see Fig. 10a, a
single collocation point starts to strongly deviate from the
reference curve at about 40 h, whereas 3 collocation points
start to deviate at about 120 h. 5 collocation points slightly
overestimate the creep strain, whereas the stress–strain curve
for 7 collocation points is hard to distinguish from the refer-
ence solution.

Thebehavior for the unidirectional and theplanar isotropic
geometries are similar to the isotropic case.

To gain further insight into the quality of the Schapery
approximation we consider the maximal relative error in
the strain for the different collocation methods, computed
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Fig. 15 Instantaneous orthotropic shear moduli for different fiber ori-
entations. a Shear modulus surface for the discretized fiber orientation
triangle. b Shear moduli plotted along the corners of the fiber orienta-

tion triangle (piso, iso, ud corresponds to the planar isotropic, isotropic,
unidirectional fiber orientation)
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Fig. 16 Viscous orthotropic shear moduli for different fiber orienta-
tions. a Shear modulus surface for the discretized fiber orientation
triangle. b Shear moduli plotted along the corners of the fiber orienta-

tion triangle (piso, iso, ud corresponds to the planar isotropic, isotropic,
unidirectional fiber orientation)

relative to the full-field solution. Here, maximal means the
maximum error up to 104 h of applied stress. Figure 11 shows
that there are strong differences in the error, depending on
the direction of applied stress and the microstructure. The
relative error is smallest for the unidirectional structure and
tension in transverse direction, remaining below 1% even
for a single collocation point. This is not unexpected, as this
loading scenarios is dominated by the matrix response, and
the matrix is described by Burgers’ model, which features
only a single collocation point. The situation in transverse
direction strongly contrasts to extension in fiber direction for
the unidirectional structure. For up to 3 collocation points,

the relative error is larger than 10%, but decreases quickly for
increased number of collocation points, and remains below
1% for seven collocation points. The behavior of the planar
isotropic structure, loaded transversely, is somewhat similar
to the unidirectional structure loaded in fiber direction. Also,
there are similarities between the isotropic fiber orientation
and the planar isotropic microstructure loaded in fiber direc-
tion: for these scenarios, the errors are largest, and decrease
rather slowly. A relative error below 1% is reached for at least
9 collocation points. All in all we see that a relative error
below 1% is guaranteed for more than 9 collocation points.
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Fig. 17 Relative interpolation error of the instantaneous elastic orthotropic constants. a E1. b E2. c E3. d G23. e G13. f G12. g ν32. h ν31. i ν21

As a side remark notice that the error in Fig. 11 increases
for more than 13 collocation points. This is no mistake, as
these frequencies have little impact for creep up to 104 h, but
change the optimum in the minimization (29) which covers
also much larger times t ∈ [0,∞). To further increase the
accuracy, the basebwouldhave tobe changed from its current
value 10. However, for the problem at hand, we consider the
accuracy to be sufficient.

Last but not least we take a look at the computational
costs of the simulations, which were carried out on 64 MPI
compute nodes, equipped with a dual Intel Xeon E5-2670
and 64 GB RAM, on our cluster. The runtimes are plotted in
Fig. 12 as a function of the frequency τbk with τ = 14.2 h
and varying integers k, see Table 1.

For k = 0 a runtime of 3.08 min is required. Then, as k
decreases, the time slightly increases up to the elastic case
“at infinity” requiring 3.5min. For increasing k, the runtimes
also increase compared to k = 0, at about 4min for k = 1 and
about 6 min for k = 2. For k = 4, already about 43 min are
necessary for resolving the unit cell problem. Thus, the vis-
cous computations are the most time-demanding, confirming
the findings of Sect. 3.4.

3.7 Discussion of the results and errors

The database was filled with the previously determined
parameters, i.e. an RVE length of thrice the fiber length, a
resolution of 1µm and 9 collocation points for Schapery’s
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method, and a regular triangulation of the fiber orientation
triangle with 15 nodes, as shown in Fig. 3. The entire compu-
tation took about 15 h on 64 MPI compute nodes, equipped
with a dual Intel Xeon E5-2670 and 64 GB RAM, on our
cluster.

As the prescribed fiber orientation tensors of fourth order
are orthotropic, the effective tensorsKl , and thus, the tensors
Dhom , Bhom

k and Fhom from (28) are orthotropic as well,
see Schneider [44]. Hence it is reasonable to investigate the
corresponding orthotropic engineering constants.

First, in Fig. 13, we take a look at the orthotropic Young’s
moduli of the instantaneous elastic response, i.e. those which
can be read fromDhom . Figure 13a shows the three Young’s
moduli E1, E2 and E3 as graphs plotted over the fiber ori-

entation triangle, whereas Fig. 13b restricts the view to the
edges of the fiber orientation triangle. The distances between
ud (unidirectional), isotropic (iso) and planar isotropic (piso)
on the x-axis of Fig. 13 correspond to the lengths of the edges
connecting the corners of the fiber orientation triangle. We
see that the graphs are smooth, but non-linear, and two of the
three Young’s moduli coincide on the edges connecting ud-
iso and iso-piso, as they correspond to transversely isotropic
fiber orientations. The contrasts between the Young’s mod-
uli is largest at the ud state (by about a factor of 2), much
smaller at the piso state (about 4

3 ), and of course, minimal
for the isotropic state.

For comparison, the “viscous” Young’s moduli, i.e. those
which can be read fromFhom , are plotted in Fig. 14. The qual-
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itative behavior of the graphs is similar to the instantaneous
Young’s moduli. However, the contrasts are much larger.
Indeed, for the ud case, theYoung’smodulus infiber direction
Ev
1 and the transverse Young’s modulus Ev

2 = Ev
3 differ by a

factor of roughly 18, and the contrast for the piso case com-
putes as about 5. Thus, the creeping behavior of a composite
exhibits a much higher anisotropy than the elastic response.

Next we investigate the instantaneous shear moduli G12,
G13 and G23 in Fig. 15. In this case, the differences between
the different shear moduli is largest for the piso structure,
with a contrast of about 1.5. Overall, the graphs appear to be
at least quadratic.

Last but not least we take a look at the “viscous” shear
moduli, which, as for the Young’s moduli, exhibit qual-
itative similarities to their instantaneous counterparts, but
differ strongly quantitatively. Indeed, the contrast between
the shear moduli Gv

12 and Gv
13 = Gv

23 at the piso state is
about 5 (Fig. 16).

We have shown piecewise linear approximations of the
orthotropic constants, considered as functions on the fiber
orientation triangle. It remains to assess the quality of the
approximation. For this purposewehave repeated the compu-
tation of effective elastic and viscous tensorsDhom andFhom

for the fiber orientations corresponding to the centers of mass
of the triangles of our chosen triangulation and compared
those tensors to their counterparts arising by interpolation.
We investigate the relative error of the orthotropic elastic
constants of the instantaneous elastic response in Fig. 17.
The overall level of the relative error is rather small, bounded
above by 0.7%.

For the orthotropic constants of the viscous tensor Fhom

the relative errors arising from interpolation are depicted in
Fig. 18. The largest error of about 6% occurs for Poisson’s
ratio ν31. For the Young’s moduli Ev

1 , E
v
2 and Ev

3 the relative
error is smaller than 2% except for the tip of the fiber orienta-
tion triangle and Ev

2 , corresponding to the vicinity of the ud
orientation, where the relative error rises to about 4%. This
results from the strong contrast between the in fiber Young’s
modulus and the transverse Young’s moduli in the viscous
case, see Fig. 15b. The relative errors for the shear moduli
are bounded by 4%.

All in all, the interpolation scheme is very accurate, except
for some extreme cases (the Poisson’s ratio in the viscous
case in the vicinity of the ud state). Still, we consider the
maximum error of about 6% acceptable since in most other
cases, the relative errors are well below 5% relative error and
thus within engineering accuracy.

4 A computational example

To prove our fiber orientation interpolation concept we inves-
tigate the viscoelastic creep behavior of a quick release

Table 4 Material parameters used for the injection molding simulation

Parameter Value

Density 1410 kg/m3

Injection temperature 275 ◦C
Mold temperature 40 ◦C
Specific heat 2400 J/K

Thermal conductivity 0.25W/(mK)

Initial orientation Isotropic

Fiber aspect ratio ra = 20

Folgar–Tucker coefficient Ci = 0.01

Particle number Np = 0

Glass transition temperature Tre f = 230 ◦C
A0 0.1 s

A1 0.65

A2 0.021 1/K

η0 100 Pa s

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2
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λ
2
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Fig. 19 Relative frequency of fiber orientations [%]

buckle, whose CAD geometry is publicly available,2 see
Fig. 1a

We conducted a mold filling simulation with injection
molding software InjectionMoldingFoam [41], which is
based upon OpenFOAM’s incompressible two-phase flow
solver [54]. Parameters for mold-filling release buckles are
available in the literature, see Bhat et al. [8]. The parameters
we used are summarized in Table 4 partially corresponding
to the following variant of the Carreau–WLF equation [31]

η(T, γ̇ ) = η0
e−A2(T−Tre f )

(1 + (A0γ̇ )2)
1−A1

2

2 https://grabcad.com/library/quick-release-buckle-19mm.
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F

F

Fig. 20 Creep simulation boundary conditions with constant surface
force F

and the injection points are shown in Fig. 1a. Notice that we
do not include a back-coupling of the fiber orientation on the
viscosity by setting the particle number Np to zero. However,

we do include the temperature and shear rate dependence of
the viscosity. For the simulation at hand, we use the ORW3
closure approximation [14].

The resulting fiber orientation is shown in Fig. 1 in a bot-
tom and side view with the color scale of Fig. 2. An almost
aligned state is dominant throughout the component, with
more isotropic and planar states visible at the weld lines
and the flat parts, respectively. A quantitative analysis of
the fiber orientation, see Fig. 19, reveals that almost the full
fiber orientation triangle is indeed covered by occurring fiber
orientations. Only the vicinity of the isotropic state and a
neighborhood of the line connecting the unidirectional and
the planar isotropic state are left blank. However, most of
the fiber orientations are concentrated around (λ1, λ2) =
(7.7, 0.15).

The calculated fiber orientation tensors serve as input for
a component analysis using the commercial finite element
software ABAQUS [1]. The mesh consists of approximately
310.000 linear tetrahedral elements (C3D4), see Fig. 20. A
viscoelastic creep test up to 200 h was computed with a con-
stant surface force 8N applied as shown in Fig. 20, taking

(a) (b)

(c) (d)

Fig. 21 Comparison of the strain in x-direction between the fiber orientation distribution obtained by injection molding simulation and an assumed
isotropic fiber orientation. a Distributed orientation, t = 0 h. b Isotropic, t = 0 h. c Distributed orientation, t = 200 h. d Isotropic, t = 200 h

(a) (b)

(c) (d)

Fig. 22 Comparison of the von Mises stress between the fiber orientation distribution obtained by injection molding simulation and the isotropic
fiber-filled component. a Distributed orientation, t = 0 h. b Isotropic, t = 0 h. c Distributed orientation, t = 200 h. d Isotropic, t = 200 h
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Fig. 23 Investigating the creep behavior in the most heavily loaded element. a Location of the element within the component. b Von Mises stress
history

into account the identified viscoelastic database identified
in Sect. 3. The computation comprised 30 time increments,
spaced equidistantly on a logarithmic scale, taking about 2 h
computation time on a desktop PC (single core). To assess the
influence of the fiber orientation, for comparison, the com-
putation was repeated for the same component, but where
the fiber orientation was assumed isotropic throughout the
whole geometry.

In Fig. 21 the strain in x-direction (cf. Fig. 20 for the axes)
is shown, comparing the constant isotropic to the distributed
fiber orientations. For the initial elastic response (t = 0),
the strain distributions are even qualitatively similar. How-
ever, after 200 h strong differences in the strain fields can
be observed. Indeed, for the isotropic fiber orientation spots
with much higher strains are visible (in yellow and orange).

To further investigate this effect we show the correspond-
ing vonMises equivalent stress in Fig. 22, and investigate the
local relaxation behavior. For the constant isotropic compo-
nent, the von Mises stress apparently changes only slightly
during the loading history. For the distributed orientation,
however, there is a load rebalancing comparing the stress
fields at t = 0 h and t = 200 h.

To gain deeper insight, we investigated the von Mises
stress history up to 200 h in the most heavily loaded element
for the distributed orientation, cf. Fig. 23. At the beginning
of the loading, the stress level lies slightly above 25.5 MPa.
After 200 h, the stress level increased to about 28 MPa, i.e.
by about 10%.

We see that the constant isotropic computing overesti-
mates the occurring local strains and does not account for the
strongly anisotropic relaxation behavior of the component
under consideration. In particular, an anisotropic component
design necessitates larger safety factors than the computa-
tions with anisotropic relaxation behavior.

5 Conclusion

This work concerned the multiscale simulation of short fiber
reinforced thermoplastics. Even though the fibers are much
smaller than the typical component scale, the mechanical
properties on the component scale are not homogeneous,
but depend on the local fiber orientation. Thus, working
with a single surrogate model for a fixed fiber orientation
is insufficient, and the need to interpolate surrogate models
corresponding to different fiber orientations arises.

We have proposed a versatile and robust approach to inter-
polate surrogate models, rigorously derived from the two-
potential-framework [23,25]. The advantage of the approach
is the ability to interpolate models of completely different
type, in particular in terms of internal variables.

To test the framework on a non-trivial example, we inves-
tigated the viscoelastic creep behavior of PA66, reinforced
by short glass fibers, and usedMoulinec–Suquet’s FFT-based
computational homogenization scheme and Schapery’s col-
locationmethod to identify anisotropic viscoelastic surrogate
models for different fiber orientation states. It is shown that
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even for a rather rough triangulation of the fiber orientation
triangle the interpolation errors are small.

Finally, the full identified viscoelastic model was used as
a material model for an ABAQUS simulation of a bench-
mark component, exhibiting an anisotropy-induced strain
rearrangement on the component scale.

This work contributes to bridging the gap between the
insights provided bymultiscale modelling of fiber reinforced
composites achieved in recent years and fast computational
analyses carried out by the constructing engineer. Indeed,
even though the filling of the database is computationally
demanding, the resultingmaterial card enables extremely fast
computations and is universal in the sense that it can be (re-
)used for different components built from the same material.

As alreadymentioned, the proposedfiber orientation inter-
polation scheme is not restricted to viscoelastic material
behavior. The availability of surrogate models for differ-
ent fiber orientations is the only prerequisite. In particular,
viscoplastic or damage effects could be investigated. Further-
more, the interpolation scheme is not limited to problems
at small strains, but extends effortlessly to the finite strain
framework. As the interpolation is based on the free energies
and the dissipation potentials, the question which strains and
stresses should be interpolated does not arise but follows
directly from the energetic formulation. Also, the scheme
could be extended to incorporate local variations in fiber vol-
ume fraction.
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