118 research outputs found

    Reviewing research evidence and the case of participation in sport and physical recreation by black and minority ethnic communities

    Get PDF
    The paper addresses the implications of using the process of systematic review in the many areas of leisure where there is a dearth of material that would be admitted into conventional Cochrane Reviews. This raises important questions about what constitutes legitimate knowledge, questions that are of critical import not just to leisure scholars, but to the formulation of policy. The search for certainty in an area that lacks conceptual consensus results in an epistemological imperialism that takes a geocentric form. While clearly, there is a need for good research design whatever the style of research, we contend that the wholesale rejection of insightful research is profligate and foolhardy. A mechanism has to be found to capitalise on good quality research of whatever form. In that search, we draw upon our experience of conducting a review of the material available on participation in sport and physical recreation by people from Black and minority ethnic groups. The paper concludes with a proposal for a more productive review process that makes better use of the full panoply of good quality research available. © 2012 © 2012 Taylor & Francis

    Temperature as a Circadian Marker in Older Human Subjects: Relationship to Metabolic Syndrome and Diabetes

    Get PDF
    Background: Circadian rhythms are characterized by approximate 24-hour oscillations in physiological and behavioral processes. Disruptions in these endogenous rhythms, most commonly associated with shift work and/or lifestyle, are recognized to be detrimental to health. Several studies have demonstrated a high correlation between disrupted circadian rhythms and metabolic disease. The aim of this study was to determine which metabolic parameters correlate with physiological measures of circadian temperature amplitude (TempAmp) and stability (TempStab). Methods: Wrist skin temperature was measured in 34 subjects (ages 50 to 70, including lean, obese, and diabetic subjects) every 10 minutes for 7 consecutive days. Anthropometric measures and fasting blood draws were conducted to obtain data on metabolic parameters: body mass index, hemoglobin A1C, triglycerides, cholesterol, high-density lipoprotein, and low-density lipoprotein. A history of hypertension and current blood pressure was noted. Results: Analysis of the data indicated a substantial reduction in TempAmp and TempStab in subjects with metabolic syndrome (three or more risk factors). To determine the impact of individual interdependent metabolic factors on temperature rhythms, stepwise multilinear regression analysis was conducted using metabolic syndrome measurements. Interestingly, only triglyceride level was consistently correlated by the analysis. Triglyceride level was shown to contribute to 33% of the variability in TempAmp and 23% of the variability in TempStab. Conclusion: Our results demonstrate that elevated triglycerides are associated with diminished TempAmp and TempStab in human subjects, and triglycerides may serve as a primary metabolic predictor of circadian parameters

    Obliquity-driven expansion of North Atlantic sea ice during the last glacial

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 10,382–10,390, doi:10.1002/2015GL066344.North Atlantic late Pleistocene climate (60,000 to 11,650 years ago) was characterized by abrupt and extreme millennial duration oscillations known as Dansgaard-Oeschger (D-O) events. However, during the Last Glacial Maximum (LGM) 23,000 to 19,000 cal years ago (23 to 19 ka), no D-O events are observed in the Greenland ice cores. Our new analysis of the Greenland δ18O record reveals a switch in the stability of the climate system around 30 ka, suggesting that a critical threshold was passed. Climate system modeling suggests that low axial obliquity at this time caused vastly expanded sea ice in the Labrador Sea, shifting Northern Hemisphere westerly winds south and reducing the strength of meridional overturning circulation. The results suggest that these feedbacks tipped the climate system into full glacial conditions, leading to maximum continental ice growth during the LGM.Australian Research Council2016-06-1

    Developing effective practice learning for tomorrow's social workers

    Get PDF
    This paper considers some of the changes in social work education in the UK, particularly focusing on practice learning in England. The changes and developments are briefly identified and examined in the context of what we know about practice learning. The paper presents some findings from a small scale qualitative study of key stakeholders involved in practice learning and education in social work and their perceptions of these anticipated changes, which are revisited at implementation. The implications for practice learning are discussed

    Functional genomics provide key insights to improve the diagnostic yield of hereditary ataxia

    Get PDF
    Improvements in functional genomic annotation have led to a critical mass of neurogenetic discoveries. This is exemplified in hereditary ataxia, a heterogeneous group of disorders characterised by incoordination from cerebellar dysfunction. Associated pathogenic variants in more than 300 genes have been described, leading to a detailed genetic classification partitioned by age-of-onset. Despite these advances, up to 75% of patients with ataxia remain molecularly undiagnosed even following whole genome sequencing, as exemplified in the 100,000 Genomes Project. This study aimed to understand whether we can improve our knowledge of the genetic architecture of hereditary ataxia by leveraging functional genomic annotations, and as a result, generate insights and strategies that raise the diagnostic yield. To achieve these aims, we used publicly-available multi-omics data to generate 294 genic features, capturing information relating to a gene's structure, genetic variation, tissue-specific, cell-type-specific and temporal expression, as well as protein products of a gene. We studied these features across genes typically causing childhood-onset, adult-onset or both types of disease first individually, then collectively. This led to the generation of testable hypotheses which we investigated using whole genome sequencing data from up to 2,182 individuals presenting with ataxia and 6,658 non-neurological probands recruited in the 100,000 Genomes Project. Using this approach, we demonstrated a high short tandem repeat (STR) density within childhood-onset genes suggesting that we may be missing pathogenic repeat expansions within this cohort. This was verified in both childhood- and adult-onset ataxia patients from the 100,000 Genomes Project who were unexpectedly found to have a trend for higher repeat sizes even at naturally-occurring STRs within known ataxia genes, implying a role for STRs in pathogenesis. Using unsupervised analysis, we found significant similarities in genomic annotation across the gene panels, which suggested adult- and childhood-onset patients should be screened using a common diagnostic gene set. We tested this within the 100,000 Genomes Project by assessing the burden of pathogenic variants among childhood-onset genes in adult-onset patients and vice versa. This demonstrated a significantly higher burden of rare, potentially pathogenic variants in conventional childhood-onset genes among individuals with adult-onset ataxia. Our analysis has implications for the current clinical practice in genetic testing for hereditary ataxia. We suggest that the diagnostic rate for hereditary ataxia could be increased by removing the age-of-onset partition, and through a modified screening for repeat expansions in naturally-occurring STRs within known ataxia-associated genes, in effect treating these regions as candidate pathogenic loci

    Morphological analysis of the sheathed flagellum of Brucella melitensis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It was recently shown that <it>B. melitensis </it>is flagellated. However, the flagellar structure remains poorly described.</p> <p>Findings</p> <p>We analyzed the structure of the polar sheathed flagellum of <it>B. melitensis </it>by TEM analysis and demonstrated that the Ryu staining is a good method to quickly visualize the flagellum by optical microscopy. The TEM analysis demonstrated that an extension of the outer membrane surrounds a filament ending by a club-like structure. The Δ<it>ftcR</it>, Δ<it>fliF</it>, Δ<it>flgE </it>and Δ<it>fliC </it>flagellar mutants still produce an empty sheath.</p> <p>Conclusions</p> <p>Our results demonstrate that the flagellum of <it>B. melitensis </it>has the characteristics of the sheathed flagella. Our results also suggest that the flagellar sheath production is not directly linked to the flagellar structure assembly and is not regulated by the FtcR master regulator.</p

    Detailed Analysis of ITPR1 Missense Variants Guides Diagnostics and Therapeutic Design

    Get PDF
    BACKGROUND: The ITPR1 gene encodes the inositol 1,4,5-trisphosphate (IP3 ) receptor type 1 (IP3 R1), a critical player in cerebellar intracellular calcium signaling. Pathogenic missense variants in ITPR1 cause congenital spinocerebellar ataxia type 29 (SCA29), Gillespie syndrome (GLSP), and severe pontine/cerebellar hypoplasia. The pathophysiological basis of the different phenotypes is poorly understood. OBJECTIVES: We aimed to identify novel SCA29 and GLSP cases to define core phenotypes, describe the spectrum of missense variation across ITPR1, standardize the ITPR1 variant nomenclature, and investigate disease progression in relation to cerebellar atrophy. METHODS: Cases were identified using next-generation sequencing through the Deciphering Developmental Disorders study, the 100,000 Genomes project, and clinical collaborations. ITPR1 alternative splicing in the human cerebellum was investigated by quantitative polymerase chain reaction. RESULTS: We report the largest, multinational case series of 46 patients with 28 unique ITPR1 missense variants. Variants clustered in functional domains of the protein, especially in the N-terminal IP3 -binding domain, the carbonic anhydrase 8 (CA8)-binding region, and the C-terminal transmembrane channel domain. Variants outside these domains were of questionable clinical significance. Standardized transcript annotation, based on our ITPR1 transcript expression data, greatly facilitated analysis. Genotype-phenotype associations were highly variable. Importantly, while cerebellar atrophy was common, cerebellar volume loss did not correlate with symptom progression. CONCLUSIONS: This dataset represents the largest cohort of patients with ITPR1 missense variants, expanding the clinical spectrum of SCA29 and GLSP. Standardized transcript annotation is essential for future reporting. Our findings will aid in diagnostic interpretation in the clinic and guide selection of variants for preclinical studies. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

    Effects of an attention demanding task on dynamic stability during treadmill walking

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>People exhibit increased difficulty balancing when they perform secondary attention-distracting tasks while walking. However, a previous study by Grabiner and Troy (<it>J. Neuroengineering Rehabil</it>., 2005) found that young healthy subjects performing a concurrent Stroop task while walking on a motorized treadmill exhibited <it>decreased </it>step width variability. However, measures of variability do not directly quantify how a system responds to perturbations. This study re-analyzed data from Grabiner and Troy 2005 to determine if performing the concurrent Stroop task directly affected the dynamic stability of walking in these same subjects.</p> <p>Methods</p> <p>Thirteen healthy volunteers walked on a motorized treadmill at their self-selected constant speed for 10 minutes both while performing the Stroop test and during undisturbed walking. This Stroop test consisted of projecting images of the name of one color, printed in text of a different color, onto a wall and asking subjects to verbally identify the color of the text. Three-dimensional motions of a marker attached to the base of the neck (C5/T1) were recorded. Marker velocities were calculated over 3 equal intervals of 200 sec each in each direction. Mean variability was calculated for each time series as the average standard deviation across all strides. Both "local" and "orbital" dynamic stability were quantified for each time series using previously established methods. These measures directly quantify how quickly small perturbations grow or decay, either continuously in real time (local) or discretely from one cycle to the next (orbital). Differences between Stroop and Control trials were evaluated using a 2-factor repeated measures ANOVA.</p> <p>Results</p> <p>Mean variability of trunk movements was significantly reduced during the Stroop tests compared to normal walking. Conversely, local and orbital stability results were mixed: some measures showed slight increases, while others showed slight decreases. In many cases, different subjects responded differently to the Stroop test. While some of our comparisons reached statistical significance, many did not. In general, measures of variability and dynamic stability reflected different properties of walking dynamics, consistent with previous findings.</p> <p>Conclusion</p> <p>These findings demonstrate that the decreased movement variability associated with the Stroop task did <it>not </it>translate to greater dynamic stability.</p

    Baseline factors associated with early and late death in intracerebral haemorrhage survivors

    Get PDF
    Background and purpose: The aim of this study was to determine whether early and late death are associated with different baseline factors in intracerebral haemorrhage (ICH) survivors. Methods: This was a secondary analysis of the multicentre prospective observational CROMIS‐2 ICH study. Death was defined as ‘early’ if occurring within 6 months of study entry and ‘late’ if occurring after this time point. Results: In our cohort (n = 1094), there were 306 deaths (per 100 patient‐years: absolute event rate, 11.7; 95% confidence intervals, 10.5–13.1); 156 were ‘early’ and 150 ‘late’. In multivariable analyses, early death was independently associated with age [per year increase; hazard ratio (HR), 1.05, P = 0.003], history of hypertension (HR, 1.89, P = 0.038), pre‐event modified Rankin scale score (per point increase; HR, 1.41, P &lt; 0.0001), admission National Institutes of Health Stroke Scale score (per point increase; HR, 1.11, P &lt; 0.0001) and haemorrhage volume &gt;60 mL (HR, 4.08, P &lt; 0.0001). Late death showed independent associations with age (per year increase; HR, 1.04, P = 0.003), pre‐event modified Rankin scale score (per point increase; HR, 1.42, P = 0.001), prior anticoagulant use (HR, 2.13, P = 0.028) and the presence of intraventricular extension (HR, 1.73, P = 0.033) in multivariable analyses. In further analyses where time was treated as continuous (rather than dichotomized), the HR of previous cerebral ischaemic events increased with time, whereas HRs for Glasgow Coma Scale score, National Institutes of Health Stroke Scale score and ICH volume decreased over time. Conclusions: We provide new evidence that not all baseline factors associated with early mortality after ICH are associated with mortality after 6 months and that the effects of baseline variables change over time. Our findings could help design better prognostic scores for later death after ICH

    A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies
    corecore