2,235 research outputs found

    Transmission of viruses via our microbiomes.

    Get PDF
    BackgroundBacteria inhabiting the human body have important roles in a number of physiological processes and are known to be shared amongst genetically-related individuals. Far less is known about viruses inhabiting the human body, but their ecology suggests they may be shared between close contacts.ResultsHere, we report the ecology of viruses in the guts and mouths of a cohort and demonstrate that substantial numbers of gut and oral viruses were shared amongst genetically unrelated, cohabitating individuals. Most of these viruses were bacteriophages, and each individual had distinct oral and gut viral ecology from their housemates despite the fact that some of their bacteriophages were shared. The distribution of bacteriophages over time within households indicated that they were frequently transmitted between the microbiomes of household contacts.ConclusionsBecause bacteriophages may shape human oral and gut bacterial ecology, their transmission to household contacts suggests they could have substantial roles in shaping the microbiota within a household

    Image-guided fluorescence tomography in head & neck surgical models

    Get PDF
    Clinical indications for fluorescence-guided surgery continue to expand, and are being spurred by the rapid development of new agents that improve biological targeting.1 There is a corresponding need to develop imaging systems that quantify fluorescence - not only at the tissue surface, but at depth. We have recently described an image-guided fluorescence tomography system that leverages geometric data from intraoperative cone-beam CT and surgical navigation,2 and builds on finite-element method software (NIRFAST) for diffuse optical tomography (DOT).3 DOT systems have most commonly been used for sub-surface inclusions buried within tissue (e.g., breast and neurological tumors). Here, we focus on inclusion models relevant to tumors infiltrating from the mucosal surface (an “iceberg” model), as is most often the case in head and neck cancer, where over 85% of tumors are squamous cell carcinoma.4 This work presents results from simulations, tissue-simulating anatomical phantoms, and animal studies involving infiltrative tumor models. The objective is to characterize system performance across a range of inclusion diameters, depths, and optical properties. For example, Fig. 1 shows a fluorescence reconstruction of a simulated tonsil tumor in an oral cavity phantom. Future clinical studies are necessary to assess in vivo performance and intraoperative workflow. Please click Additional Files below to see the full abstract

    Laser surface treatment of polyamide and NiTi alloy and the effects on mesenchymal stem cell response

    Get PDF
    Mesenchymal stem cells (MSCs) are known to play important roles in development, post-natal growth, repair, and regeneration of mesenchymal tissues. What is more, surface treatments are widely reported to affect the biomimetic nature of materials. This paper will detail, discuss and compare laser surface treatment of polyamide (Polyamide 6,6), using a 60 W CO2 laser, and NiTi alloy, using a 100 W fiber laser, and the effects of these treatments on mesenchymal stem cell response. The surface morphology and composition of the polyamide and NiTi alloy were studied by scanning electron microscopy (SEM) and X-ray photoemission spectroscopy (XPS), respectively. MSC cell morphology cell counting and viability measurements were done by employing a haemocytometer and MTT colorimetric assay. The success of enhanced adhesion and spreading of the MSCs on each of the laser surface treated samples, when compared to as-received samples, is evidenced in this work

    Enhanced uptake of nanoparticle drug carriers via a thermoresponsive shell enhances cytotoxicity in a cancer cell line

    Get PDF
    Polymer particles consisting of a biodegradable poly[lactide-co-glycolide] (PLGA) core and a thermoresponsive shell have been formulated to encapsulate the dye rhodamine 6G and the potent cytotoxic drug paclitaxel. Cellular uptake of these particles is significantly enhanced above the thermal transition temperature (TTT) of the polymer shells in the human breast carcinoma cell line MCF-7 as determined by flow cytometry and fluorescence microscopy. Paclitaxel-loaded particles display reduced and enhanced cytotoxicity below and above the TTT respectively compared to unencapsulated drug. The data suggests a potential route to enhanced anti-cancer efficacy through temperature-mediated cell targeting.© The Royal Society of Chemistry 2013

    Suitability versus fidelity for rating single-photon guns

    Get PDF
    The creation of specified quantum states is important for most, if not all, applications in quantum computation and communication. The quality of the state preparation is therefore an essential ingredient in any assessment of a quantum-state gun. We show that the fidelity, under the standard definitions is not sufficient to assess quantum sources, and we propose a new measure of suitability that necessarily depends on the application for the source. We consider the performance of single-photon guns in the context of quantum key distribution (QKD) and linear optical quantum computation. Single-photon sources for QKD need radically different properties than sources for quantum computing. Furthermore, the suitability for single-photon guns is discussed explicitly in terms of experimentally accessible criteria.Comment: 4 pages, 2 figures Revised per referee suggestion

    A novel HLA-B18 restricted CD8+ T cell epitope is efficiently cross-presented by dendritic cells from soluble tumor antigen

    Get PDF
    NY-ESO-1 has been a major target of many immunotherapy trials because it is expressed by various cancers and is highly immunogenic. In this study, we have identified a novel HLA-B*1801-restricted CD8<sup>+</sup>T cell epitope, NY-ESO-1<sub>88–96</sub> (LEFYLAMPF) and compared its direct- and cross-presentation to that of the reported NY-ESO-1<sub>157–165</sub> epitope restricted to HLA-A*0201. Although both epitopes were readily cross-presented by DCs exposed to various forms of full-length NY-ESO-1 antigen, remarkably NY-ESO-1<sub>88–96</sub> is much more efficiently cross-presented from the soluble form, than NY-ESO-1<sub>157–165</sub>. On the other hand, NY-ESO-1<sub>157–165</sub> is efficiently presented by NY-ESO-1-expressing tumor cells and its presentation was not enhanced by IFN-γ treatment, which induced immunoproteasome as demonstrated by Western blots and functionally a decreased presentation of Melan A<sub>26–35</sub>; whereas NY-ESO-1<sub>88–96</sub> was very inefficiently presented by the same tumor cell lines, except for one that expressed high level of immunoproteasome. It was only presented when the tumor cells were first IFN-γ treated, followed by infection with recombinant vaccinia virus encoding NY-ESO-1, which dramatically increased NY-ESO-1 expression. These data indicate that the presentation of NY-ESO-1<sub>88–96</sub> is immunoproteasome dependent. Furthermore, a survey was conducted on multiple samples collected from HLA-B18+ melanoma patients. Surprisingly, all the detectable responses to NY-ESO-1<sub>88–96</sub> from patients, including those who received NY-ESO-1 ISCOMATRIX™ vaccine were induced spontaneously. Taken together, these results imply that some epitopes can be inefficiently presented by tumor cells although the corresponding CD8<sup>+</sup>T cell responses are efficiently primed in vivo by DCs cross-presenting these epitopes. The potential implications for cancer vaccine strategies are further discussed
    corecore