1,650 research outputs found
Meson Decay Constants from Isospin Mass Splittings in the Quark Model
Decay constants of and mesons are estimated within the framework of a
heavy-quark approach using measured isospin mass splittings in the , ,
and states to isolate the electromagnetic hyperfine interaction between
quarks. The values MeV and MeV are
obtained. Only experimental errors are given; possible theoretical ambiguities,
and suggestions for reducing them, are noted.Comment: 7 pages, LaTeX, EFI-92-3
Influence of the U(1)_A Anomaly on the QCD Phase Transition
The SU(3)_{r} \times SU(3)_{\ell} linear sigma model is used to study the
chiral symmetry restoring phase transition of QCD at nonzero temperature. The
line of second order phase transitions separating the first order and smooth
crossover regions is located in the plane of the strange and nonstrange quark
masses. It is found that if the U(1)_{A} symmetry is explicitly broken by the
U(1)_{A} anomaly then there is a smooth crossover to the chirally symmetric
phase for physical values of the quark masses. If the U(1)_{A} anomaly is
absent, then there is a phase transition provided that the \sigma meson mass is
at least 600 MeV. In both cases, the region of first order phase transitions in
the quark mass plane is enlarged as the mass of the \sigma meson is increased.Comment: 5 pages, 3 figures, Revtex, discussion extended and references added.
To appear in PR
Recommended from our members
The amino acid and polycyclic aromatic hydrocarbon compositions of the promptly recovered CM2 Winchcombe carbonaceous chondrite
The rapid recovery of the Winchcombe meteorite offers a valuable opportunity to study the soluble organic matter (SOM) profile in pristine carbonaceous astromaterials. Our interests in the biologically relevant molecules, amino acids—monomers of protein, and the most prevalent meteoritic organics—polycyclic aromatic hydrocarbons (PAHs) are addressed by analyzing the solvent extracts of a Winchcombe meteorite stone using gas chromatography mass spectrometry. The Winchcombe sample contains an amino acid abundance of ~1132 parts‐per‐billion that is about 10 times lower than other CM2 meteorites. The detection of terrestrially rare amino acids, including α‐aminoisobutyric acid (AIB); isovaline; β‐alanine; α‐, β‐, and γ‐amino‐n‐butyric acids; and 5‐aminopentanoic acid, and the racemic enantiomeric ratios (D/L = 1) observed for alanine and isovaline indicate that these amino acids are indigenous to the meteorite and not terrestrial contaminants. The presence of predominantly α‐AIB and isovaline is consistent with their formation via the Strecker‐cyanohydrin synthetic pathway. The L‐enantiomeric excesses in isovaline previously observed for aqueously altered meteorites were viewed as an indicator of parent body aqueous processing; thus, the racemic ratio of isovaline observed for Winchcombe, alongside the overall high free:total amino acid ratio, and the low amino acid concentration suggest that the analyzed stone is derived from a lithology that has experienced brief episode(s) of aqueous alteration. Winchcombe also contains 2‐ to 6‐ring alkylated and nonalkylated PAHs. The low total PAHs abundance (6177 ppb) and high nonalkylated:alkylated ratio are distinct from that observed for heavily aqueously altered CMs. The weak petrographic properties of Winchcombe, as well as the discrepancies observed for the Winchcombe SOM content—a low total amino acid abundance comparable to heavily altered CMs, and yet the high free:total amino acid and nonalkylated:alkylated PAH ratios are on par with the less altered CMs—suggest that Winchcombe could represent a class of weak, poorly lithified meteorite not been previously studied
Focus Points and Naturalness in Supersymmetry
We analyze focus points in supersymmetric theories, where a parameter's
renormalization group trajectories meet for a family of ultraviolet boundary
conditions. We show that in a class of models including minimal supergravity,
the up-type Higgs mass has a focus point at the weak scale, where its value is
highly insensitive to the universal scalar mass. As a result, scalar masses as
large as 2 to 3 TeV are consistent with naturalness, and {\em all} squarks,
sleptons and heavy Higgs scalars may be beyond the discovery reaches of the
Large Hadron Collider and proposed linear colliders. Gaugino and Higgsino
masses are, however, still constrained to be near the weak scale. The focus
point behavior is remarkably robust, holding for both moderate and large
\tan\beta, any weak scale gaugino masses and A parameters, variations in the
top quark mass within experimental bounds, and for large variations in the
boundary condition scale.Comment: 30 pages, 17 figure
A bayesian meta-analysis of multiple treatment comparisons of systemic regimens for advanced pancreatic cancer
© 2014 Chan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: For advanced pancreatic cancer, many regimens have been compared with gemcitabine (G) as the standard arm in randomized controlled trials. Few regimens have been directly compared with each other in randomized controlled trials and the relative efficacy and safety among them remains unclear
Phase III Prospective Randomized Comparison Trial of Depot Octreotide Plus Interferon Alfa-2b Versus Depot Octreotide Plus Bevacizumab in Patients With Advanced Carcinoid Tumors: SWOG S0518
Purpose
Treatment options for neuroendocrine tumors (NETs) remain limited. This trial assessed the progression-free survival (PFS) of bevacizumab or interferon alfa-2b (IFN-α-2b) added to octreotide among patients with advanced NETs.
Patients and Methods
Southwest Oncology Group (SWOG) S0518, a phase III study conducted in a US cooperative group system, enrolled patients with advanced grades 1 and 2 NETs with progressive disease or other poor prognostic features. Patients were randomly assigned to treatment with octreotide LAR 20 mg every 21 days with either bevacizumab 15 mg/kg every 21 days or 5 million units of IFN-α-2b three times per week. The primary end point was centrally assessed PFS. This trial is registered with ClinicalTrials.gov as NCT00569127.
Results
A total of 427 patients was enrolled, of whom 214 were allocated to bevacizumab and 213 to IFN-α-2b. The median PFS by central review was 16.6 months (95% CI, 12.9 to 19.6 months) in the bevacizumab arm and was 15.4 months (95% CI, 9.6 to 18.6 months) in the IFN arm (hazard ratio [HR], 0.93; 95% CI, 0.73 to 1.18; P = .55). By site review, the median PFS times were 15.4 months (95% CI, 12.6 to 17.2 months) for bevacizumab and 10.6 months (95% CI, 8.5 to 14.4 months) for interferon (HR, 0.90; 95% CI, 0.72 to 1.12; P = .33). Time to treatment failure was longer with bevacizumab than with IFN (HR, 0.72; 95% CI, 0.58 to 0.89; P = .003). Confirmed radiologic response rates were 12% (95% CI, 8% to 18%) for bevacizumab and 4% (95% CI, 2% to 8%) for IFN. Common adverse events with bevacizumab and octreotide included hypertension (32%), proteinuria (9%), and fatigue (7%); with IFN and octreotide, they included fatigue (27%), neutropenia (12%), and nausea (6%).
Conclusion
No significant differences in PFS were observed between the bevacizumab and IFN arms, which suggests that these agents have similar antitumor activity among patients with advanced NETs
State of the Art on Diffusion Models for Visual Computing
The field of visual computing is rapidly advancing due to the emergence of
generative artificial intelligence (AI), which unlocks unprecedented
capabilities for the generation, editing, and reconstruction of images, videos,
and 3D scenes. In these domains, diffusion models are the generative AI
architecture of choice. Within the last year alone, the literature on
diffusion-based tools and applications has seen exponential growth and relevant
papers are published across the computer graphics, computer vision, and AI
communities with new works appearing daily on arXiv. This rapid growth of the
field makes it difficult to keep up with all recent developments. The goal of
this state-of-the-art report (STAR) is to introduce the basic mathematical
concepts of diffusion models, implementation details and design choices of the
popular Stable Diffusion model, as well as overview important aspects of these
generative AI tools, including personalization, conditioning, inversion, among
others. Moreover, we give a comprehensive overview of the rapidly growing
literature on diffusion-based generation and editing, categorized by the type
of generated medium, including 2D images, videos, 3D objects, locomotion, and
4D scenes. Finally, we discuss available datasets, metrics, open challenges,
and social implications. This STAR provides an intuitive starting point to
explore this exciting topic for researchers, artists, and practitioners alike
- …