The field of visual computing is rapidly advancing due to the emergence of
generative artificial intelligence (AI), which unlocks unprecedented
capabilities for the generation, editing, and reconstruction of images, videos,
and 3D scenes. In these domains, diffusion models are the generative AI
architecture of choice. Within the last year alone, the literature on
diffusion-based tools and applications has seen exponential growth and relevant
papers are published across the computer graphics, computer vision, and AI
communities with new works appearing daily on arXiv. This rapid growth of the
field makes it difficult to keep up with all recent developments. The goal of
this state-of-the-art report (STAR) is to introduce the basic mathematical
concepts of diffusion models, implementation details and design choices of the
popular Stable Diffusion model, as well as overview important aspects of these
generative AI tools, including personalization, conditioning, inversion, among
others. Moreover, we give a comprehensive overview of the rapidly growing
literature on diffusion-based generation and editing, categorized by the type
of generated medium, including 2D images, videos, 3D objects, locomotion, and
4D scenes. Finally, we discuss available datasets, metrics, open challenges,
and social implications. This STAR provides an intuitive starting point to
explore this exciting topic for researchers, artists, and practitioners alike