141 research outputs found

    Partners in Crime: Genes within an Amplicon Collude to Globally Deregulate Chromatin in Lymphoma

    Get PDF
    In this issue of Cancer Cell, Rui et al. identify JAK2 and JMJDC2 as two contiguous, coamplified oncogenes in primary mediastinal B cell and Hodgkin lymphoma. Together, JAK2 and JMJD2C induce major changes in chromatin structure and gene expression. Targeting these proteins with small molecules represents a new avenue for therapy

    Sprouty1 regulates reversible quiescence of a self-renewing adult muscle stem cell pool during regeneration.

    Get PDF
    Satellite cells are skeletal muscle stem cells capable of self-renewal and differentiation after transplantation, but whether they contribute to endogenous muscle fiber repair has been unclear. The transcription factor Pax7 marks satellite cells and is critical for establishing the adult satellite cell pool. By using a lineage tracing approach, we show that after injury, quiescent adult Pax7(+) cells enter the cell cycle; a subpopulation returns to quiescence to replenish the satellite cell compartment, while others contribute to muscle fiber formation. We demonstrate that Sprouty1 (Spry1), a receptor tyrosine kinase signaling inhibitor, is expressed in quiescent Pax7(+) satellite cells in uninjured muscle, downregulated in proliferating myogenic cells after injury, and reinduced as Pax7(+) cells re-enter quiescence. We show that Spry1 is required for the return to quiescence and homeostasis of the satellite cell pool during repair. Our results therefore define a role for Spry1 in adult muscle stem cell biology and tissue repair

    Sprouty1 controls genitourinary development via its N-terminal tyrosine

    Get PDF
    Background: Congenital anomalies of the kidney and urinary tract (CAKUT) is a group of diseases that include a broad spectrum of developmental defects of the genitourinary system. Mouse models indicate that perturbations of the GDNF-Ret signaling pathway are a major genetic cause of CAKUT. Sprouty1 is an intracellular Ret inhibitor whose mutation results in supernumerary kidneys, megaureters, and hydronephrosis in mice. Both the molecular mechanisms and the structural domains critical for Sprouty function are a matter of controversy, partly because studies pursuing this objective rely on ectopic overexpression in cell lines. A conserved N-terminal tyrosine has been frequently, but not always, identified as critical for their function in vitro. Methods: We have generated Sprouty1 knockin mice bearing a tyrosine-to-alanine substitution in position 53, corresponding to the conserved N-terminal tyrosine of Sprouty1. We have characterized development of the genitourinary systems of these mice via different methods, including the use of reporter mice expressing EGFP form the Ret locus, and whole mount cytokeratin staining. Results: Mice lacking this tyrosine grow ectopic ureteric buds that ultimately will form supernumerary kidneys, a phenotype indistinguishable to that of Sprouty1 knockout mice. Sprouty1 knockin mice also present megaureters and vesicoureteral reflux, caused by failure of ureters to separate from Wolffian ducts and migrate to their definitive position. Conclusions: Tyrosine 53 is absolutely necessary to convey Sprouty1 function during genitourinary development.This work was supported by grants BFU2010-47175-P and BFU2017-83646-P (AEI/FEDER, UE) from MINECO to ME. MV was supported by a predoctoral fellowship from AGAUR. CA was supported by a predoctoral fellowship from Universitat de Lleida. SC was supported by a Cofund action from the Marie Curie program of the EU. We are grateful to Dr. Sanjay Jain (Washington University, St Louis) for sharing RetEGFP mice, and to Dr. Tung-Tien Sun (New York University) for Uroplakin antibody. We thank Anna MaciĂ  (IRB Lleida) for her contribution to the initial development of this manuscript, as well as Marta Hereu, Maria Santacana, MĂłnica Domingo and Maria Carrele for their excellent technical assistance

    G Protein-regulated Inducer of Neurite Outgrowth (GRIN) Modulates Sprouty Protein Repression of Mitogen-activated Protein Kinase (MAPK) Activation by Growth Factor Stimulation

    Get PDF
    Gαo/i interacts directly with GRIN (G protein-regulated inducer of neurite outgrowth). Using the yeast two-hybrid system, we identified Sprouty2 as an interacting partner of GRIN. Gαo and Sprouty2 bind to overlapping regions of GRIN, thus competing for GRIN binding. Imaging experiments demonstrated that Gαo expression promoted GRIN translocation to the plasma membrane, whereas Sprouty2 expression failed to do so. Given the role of Sprouty2 in the regulation of growth factor-mediated MAPK activation, we examined the contribution of the GRIN-Sprouty2 interaction to CB1 cannabinoid receptor regulation of FGF receptor signaling. In Neuro-2A cells, a system that expresses all of the components endogenously, modulation of GRIN levels led to regulation of MAPK activation. Overexpression of GRIN potentiated FGF activation of MAPK and decreased tyrosine phosphorylation of Sprouty2. Pretreatment with Go/i-coupled CB1 receptor agonist attenuated subsequent FGF activation of MAPK. Decreased expression of GRIN both diminished FGF activation of MAPK and blocked CB1R attenuation of MAPK activation. These observations indicate that Gαo interacts with GRIN and outcompetes GRIN from bound Sprouty. Free Sprouty then in turn inhibits growth factor signaling. Thus, here we present a novel mechanism of how Go/i-coupled receptors can inhibit growth factor signaling to MAPK

    Autocrine Activation of the MET Receptor Tyrosine Kinase in Acute Myeloid Leukemia

    Get PDF
    Although the treatment of acute myeloid leukemia (AML) has improved significantly, more than half of all patients develop disease that is refractory to intensive chemotherapy. Functional genomics approaches offer a means to discover specific molecules mediating aberrant growth and survival of cancer cells. Thus, using a loss-of-function RNA interference genomic screen, we identified aberrant expression of the hepatocyte growth factor (HGF) as a critical factor in AML pathogenesis. We found HGF expression leading to autocrine activation of its receptor tyrosine kinase, MET, in nearly half of the AML cell lines and clinical samples studied. Genetic depletion of HGF or MET potently inhibited the growth and survival of HGF-expressing AML cells. However, leukemic cells treated with the specific MET kinase inhibitor crizotinib developed resistance due to compensatory upregulation of HGF expression, leading to restoration of MET signaling. In cases of AML where MET is coactivated with other tyrosine kinases, such as fibroblast growth factor receptor 1 (FGFR1), concomitant inhibition of FGFR1 and MET blocked compensatory HGF upregulation, resulting in sustained logarithmic cell kill both in vitro and in xenograft models in vivo. Our results demonstrate widespread dependence of AML cells on autocrine activation of MET, as well as the importance of compensatory upregulation of HGF expression in maintaining leukemogenic signaling by this receptor. We anticipate that these findings will lead to the design of additional strategies to block adaptive cellular responses that drive compensatory ligand expression as an essential component of the targeted inhibition of oncogenic receptors in human cancers

    Transcriptome analyses based on genetic screens for Pax3 myogenic targets in the mouse embryo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pax3 is a key upstream regulator of the onset of myogenesis, controlling progenitor cell survival and behaviour as well as entry into the myogenic programme. It functions in the dermomyotome of the somite from which skeletal muscle derives and in progenitor cell populations that migrate from the somite such as those of the limbs. Few Pax3 target genes have been identified. Identifying genes that lie genetically downstream of <it>Pax3 </it>is therefore an important endeavour in elucidating the myogenic gene regulatory network.</p> <p>Results</p> <p>We have undertaken a screen in the mouse embryo which employs a <it>Pax3<sup>GFP </sup></it>allele that permits isolation of Pax3 expressing cells by flow cytometry and a <it>Pax3<sup>PAX3-FKHR </sup></it>allele that encodes PAX3-FKHR in which the DNA binding domain of Pax3 is fused to the strong transcriptional activation domain of FKHR. This constitutes a gain of function allele that rescues the <it>Pax3 </it>mutant phenotype. Microarray comparisons were carried out between <it>Pax3<sup>GFP/+ </sup></it>and <it>Pax3<sup>GFP/PAX3-FKHR </sup></it>preparations from the hypaxial dermomyotome of somites at E9.5 and forelimb buds at E10.5. A further transcriptome comparison between Pax3-GFP positive and negative cells identified sequences specific to myogenic progenitors in the forelimb buds. Potential Pax3 targets, based on changes in transcript levels on the gain of function genetic background, were validated by analysis on loss or partial loss of function <it>Pax3 </it>mutant backgrounds. Sequences that are up- or down-regulated in the presence of PAX3-FKHR are classified as somite only, somite and limb or limb only. The latter should not contain sequences from Pax3 positive neural crest cells which do not invade the limbs. Verification by whole mount <it>in situ </it>hybridisation distinguishes myogenic markers. Presentation of potential Pax3 target genes focuses on signalling pathways and on transcriptional regulation.</p> <p>Conclusions</p> <p>Pax3 orchestrates many of the signalling pathways implicated in the activation or repression of myogenesis by regulating effectors and also, notably, inhibitors of these pathways. Important transcriptional regulators of myogenesis are candidate Pax3 targets. Myogenic determination genes, such as <it>Myf5 </it>are controlled positively, whereas the effect of <it>Pax3 </it>on genes encoding inhibitors of myogenesis provides a potential brake on differentiation. In the progenitor cell population, <it>Pax7 </it>and also <it>Hdac5 </it>which is a potential repressor of <it>Foxc2</it>, are subject to positive control by <it>Pax3</it>.</p
    • …
    corecore