56 research outputs found
Ground states and thermal states of the random field Ising model
The random field Ising model is studied numerically at both zero and positive
temperature. Ground states are mapped out in a region of random and external
field strength. Thermal states and thermodynamic properties are obtained for
all temperatures using the the Wang-Landau algorithm. The specific heat and
susceptibility typically display sharp peaks in the critical region for large
systems and strong disorder. These sharp peaks result from large domains
flipping. For a given realization of disorder, ground states and thermal states
near the critical line are found to be strongly correlated--a concrete
manifestation of the zero temperature fixed point scenario.Comment: 5 pages, 5 figures; new material added in this versio
Numerical study of the random field Ising model at zero and positive temperature
In this paper the three dimensional random field Ising model is studied at
both zero temperature and positive temperature. Critical exponents are
extracted at zero temperature by finite size scaling analysis of large
discontinuities in the bond energy. The heat capacity exponent is
found to be near zero. The ground states are determined for a range of external
field and disorder strength near the zero temperature critical point and the
scaling of ground state tilings of the field-disorder plane is discussed. At
positive temperature the specific heat and the susceptibility are obtained
using the Wang-Landau algorithm. It is found that sharp peaks are present in
these physical quantities for some realizations of systems sized and
larger. These sharp peaks result from flipping large domains and correspond to
large discontinuities in ground state bond energies. Finally, zero temperature
and positive temperature spin configurations near the critical line are found
to be highly correlated suggesting a strong version of the zero temperature
fixed point hypothesis.Comment: 11 pages, 14 figure
EM Monitoring and classification of IEMI and protocol-based attacks on IEEE 802.11n communication networks
International audienceThe development of connected devices and their daily use are today at the origin of the omnipresence of Wi-Fi wireless networks. However, these Wi-Fi networks are often vulnerable, and can be used by malicious people to disturb services, intercept sensitive data or to gain access to system. In railways, trains are now equipped with wireless communication systems for operational purposes or for passenger services. In both cases, defense strategies have to be developed to prevent misuses of the networks. The first objective of this study is to propose a monitoring solution, which is independent of the communication networks, to detect the occurrence of attacks. The second objective is to develop a method able to classify attacks of different types: the intentional electromagnetic interference (IEMI), i.e., jamming attacks, and the protocol-based attacks. This study focuses on the IEEE 802.11n Wi-Fi protocol. To perform these analyses, we propose to monitor and to analyze electromagnetic (EM) signals received by a monitoring antenna and a receiver collecting EM spectra. After that, we build a classification protocol following two steps: the first consists in the construction of a Support Vector Machine (SVM) classification model using the collected spectra and the second step uses this SVM model to predict the class of the attack (if any). A time-based correction of this prediction using the nearest neighbors is also included in this second step
Radiation- and Phonon-Bottleneck-Induced Tunneling in the Fe8 Single-Molecule Magnet
We measure magnetization changes in a single crystal of the single-molecule
magnet Fe8 when exposed to intense, short (<20 s) pulses of microwave
radiation resonant with the m = 10 to 9 transition. We find that radiation
induces a phonon bottleneck in the system with a time scale of ~5 s. The
phonon bottleneck, in turn, drives the spin dynamics, allowing observation of
thermally assisted resonant tunneling between spin states at the 100-ns time
scale. Detailed numerical simulations quantitatively reproduce the data and
yield a spin-phonon relaxation time of T1 ~ 40 ns.Comment: 6 RevTeX pages, including 4 EPS figures, version accepted for
publicatio
Signed zeros of Gaussian vector fields-density, correlation functions and curvature
We calculate correlation functions of the (signed) density of zeros of
Gaussian distributed vector fields. We are able to express correlation
functions of arbitrary order through the curvature tensor of a certain abstract
Riemann-Cartan or Riemannian manifold. As an application, we discuss one- and
two-point functions. The zeros of a two-dimensional Gaussian vector field model
the distribution of topological defects in the high-temperature phase of
two-dimensional systems with orientational degrees of freedom, such as
superfluid films, thin superconductors and liquid crystals.Comment: 14 pages, 1 figure, uses iopart.cls, improved presentation, to appear
in J. Phys.
Resonant Magnetization Tunneling in Mn12 Acetate: The Absence of Inhomogeneous Hyperfine Broadening
We present the results of a detailed study of the
thermally-assisted-resonant-tunneling relaxation rate of Mn12 acetate as a
function of an external, longitudinal magnetic field and find that the data can
be fit extremely well to a Lorentzian function. No hint of inhomogeneous
broadening is found, even though some is expected from the Mn nuclear hyperfine
interaction. This inconsistency implies that the tunneling mechanism cannot be
described simply in terms of a random hyperfine field.Comment: Some minor revisions, title changed, updated figures, two added
notes, one added reference. RevTeX, 4 pages, 3 postscript figures. Submitted
to Rapid Communication
Spiral spin-liquid and the emergence of a vortex-like state in MnScS
Spirals and helices are common motifs of long-range order in magnetic solids,
and they may also be organized into more complex emergent structures such as
magnetic skyrmions and vortices. A new type of spiral state, the spiral
spin-liquid, in which spins fluctuate collectively as spirals, has recently
been predicted to exist. Here, using neutron scattering techniques, we
experimentally prove the existence of a spiral spin-liquid in MnScS by
directly observing the 'spiral surface' - a continuous surface of spiral
propagation vectors in reciprocal space. We elucidate the multi-step ordering
behavior of the spiral spin-liquid, and discover a vortex-like triple-q phase
on application of a magnetic field. Our results prove the effectiveness of the
- Hamiltonian on the diamond lattice as a model for the spiral
spin-liquid state in MnScS, and also demonstrate a new way to realize a
magnetic vortex lattice.Comment: 10 pages, 11 figure
Earth Observation Technologies: Low-End-Market Disruptive Innovation
After decades of traditional space businesses, the space paradigm is changing. New approaches to more efficient missions in terms of costs, design, and manufacturing processes are fostered. For instance, placing big constellations of micro- and nano-satellites in Low Earth Orbit and Very Low Earth Orbit (LEO and VLEO) enables the space community to obtain a huge amount of data in near real-time with an unprecedented temporal resolution. Beyond technology innovations, other drivers promote innovation in the space sector like the increasing demand for Earth Observation (EO) data by the commercial sector. Perez et al. stated that the EO industry is the second market in terms of operative satellites (661 units), micro- and nano-satellites being the higher share of them (61%). Technological and market drivers encourage the emergence of new start-ups in the space environment like Skybox, OneWeb, Telesat, Planet, and OpenCosmos, among others, with novel business models that change the accessibility, affordability, ownership, and commercialization of space products and services. This chapter shows some results of the H2020 DISCOVERER (DISruptive teChnOlogies for VERy low Earth oRbit platforms) Project and focuses on understanding how micro- and nano-satellites have been disrupting the EO market in front of traditional platforms
A review of gas-surface interaction models for orbital aerodynamics applications
Renewed interest in Very Low Earth Orbits (VLEO) - i.e. altitudes below 450 km - has led to an increased demand for accurate environment characterisation and aerodynamic force prediction. While the former requires knowledge of the mechanisms that drive density variations in the thermosphere, the latter also depends on the interactions between the gas-particles in the residual atmosphere and the surfaces exposed to the flow. The determination of the aerodynamic coefficients is hindered by the numerous uncertainties that characterise the physical processes occurring at the exposed surfaces. Several models have been produced over the last 60 years with the intent of combining accuracy with relatively simple implementations. In this paper the most popular models have been selected and reviewed using as discriminating factors relevance with regards to orbital aerodynamics applications and theoretical agreement with gas-beam experimental data. More sophisticated models were neglected, since their increased accuracy is generally accompanied by a substantial increase in computation times which is likely to be unsuitable for most space engineering applications. For the sake of clarity, a distinction was introduced between physical and scattering kernel theory based gas-surface interaction models. The physical model category comprises the Hard Cube model, the Soft Cube model and the Washboard model, while the scattering kernel family consists of the Maxwell model, the Nocilla-Hurlbut-Sherman model and the Cercignani-Lampis-Lord model. Limits and assets of each model have been discussed with regards to the context of this paper. Wherever possible, comments have been provided to help the reader to identify possible future challenges for gas-surface interaction science with regards to orbital aerodynamic applications
EuReCa ONE—27 Nations, ONE Europe, ONE Registry A prospective one month analysis of out-of-hospital cardiac arrest outcomes in 27 countries in Europe
AbstractIntroductionThe aim of the EuReCa ONE study was to determine the incidence, process, and outcome for out of hospital cardiac arrest (OHCA) throughout Europe.MethodsThis was an international, prospective, multi-centre one-month study. Patients who suffered an OHCA during October 2014 who were attended and/or treated by an Emergency Medical Service (EMS) were eligible for inclusion in the study. Data were extracted from national, regional or local registries.ResultsData on 10,682 confirmed OHCAs from 248 regions in 27 countries, covering an estimated population of 174 million. In 7146 (66%) cases, CPR was started by a bystander or by the EMS. The incidence of CPR attempts ranged from 19.0 to 104.0 per 100,000 population per year. 1735 had ROSC on arrival at hospital (25.2%), Overall, 662/6414 (10.3%) in all cases with CPR attempted survived for at least 30 days or to hospital discharge.ConclusionThe results of EuReCa ONE highlight that OHCA is still a major public health problem accounting for a substantial number of deaths in Europe.EuReCa ONE very clearly demonstrates marked differences in the processes for data collection and reported outcomes following OHCA all over Europe. Using these data and analyses, different countries, regions, systems, and concepts can benchmark themselves and may learn from each other to further improve survival following one of our major health care events
- …