103 research outputs found

    Graph analysis of functional brain networks: practical issues in translational neuroscience

    Full text link
    The brain can be regarded as a network: a connected system where nodes, or units, represent different specialized regions and links, or connections, represent communication pathways. From a functional perspective communication is coded by temporal dependence between the activities of different brain areas. In the last decade, the abstract representation of the brain as a graph has allowed to visualize functional brain networks and describe their non-trivial topological properties in a compact and objective way. Nowadays, the use of graph analysis in translational neuroscience has become essential to quantify brain dysfunctions in terms of aberrant reconfiguration of functional brain networks. Despite its evident impact, graph analysis of functional brain networks is not a simple toolbox that can be blindly applied to brain signals. On the one hand, it requires a know-how of all the methodological steps of the processing pipeline that manipulates the input brain signals and extract the functional network properties. On the other hand, a knowledge of the neural phenomenon under study is required to perform physiological-relevant analysis. The aim of this review is to provide practical indications to make sense of brain network analysis and contrast counterproductive attitudes

    Low-level grounding in a multimodal mobile service robot conversational system using graphical models

    Get PDF
    The main task of a service robot with a voice-enabled communication interface is to engage a user in dialogue providing an access to the services it is designed for. In managing such interaction, inferring the user goal (intention) from the request for a service at each dialogue turn is the key issue. In service robot deployment conditions speech recognition limitations with noisy speech input and inexperienced users may jeopardize user goal identification. In this paper, we introduce a grounding state-based model motivated by reducing the risk of communication failure due to incorrect user goal identification. The model exploits the multiple modalities available in the service robot system to provide evidence for reaching grounding states. In order to handle the speech input as sufficiently grounded (correctly understood) by the robot, four proposed states have to be reached. Bayesian networks combining speech and non-speech modalities during user goal identification are used to estimate probability that each grounding state has been reached. These probabilities serve as a base for detecting whether the user is attending to the conversation, as well as for deciding on an alternative input modality (e.g., buttons) when the speech modality is unreliable. The Bayesian networks used in the grounding model are specially designed for modularity and computationally efficient inference. The potential of the proposed model is demonstrated comparing a conversational system for the mobile service robot RoboX employing only speech recognition for user goal identification, and a system equipped with multimodal grounding. The evaluation experiments use component and system level metrics for technical (objective) and user-based (subjective) evaluation with multimodal data collected during the conversations of the robot RoboX with user

    Robust correlation for aggregated data with spatial characteristics

    Get PDF
    The objective of this paper is to study the robustness of computation of correlations under spatial constraints. The motivation of our paper is the specific case of functional magnetic resonance (fMRI) brain imaging data, where voxels are aggregated to compute correlations. In this paper we show that the way the spatial components are aggregating to com- pute correlation may have a strong influence on the resulting estimations. We then propose various estimators which take into account this spatial structure

    Weakly Supervised Learning with Automated Labels from Radiology Reports for Glioma Change Detection

    Full text link
    Gliomas are the most frequent primary brain tumors in adults. Glioma change detection aims at finding the relevant parts of the image that change over time. Although Deep Learning (DL) shows promising performances in similar change detection tasks, the creation of large annotated datasets represents a major bottleneck for supervised DL applications in radiology. To overcome this, we propose a combined use of weak labels (imprecise, but fast-to-create annotations) and Transfer Learning (TL). Specifically, we explore inductive TL, where source and target domains are identical, but tasks are different due to a label shift: our target labels are created manually by three radiologists, whereas our source weak labels are generated automatically from radiology reports via NLP. We frame knowledge transfer as hyperparameter optimization, thus avoiding heuristic choices that are frequent in related works. We investigate the relationship between model size and TL, comparing a low-capacity VGG with a higher-capacity ResNeXt model. We evaluate our models on 1693 T2-weighted magnetic resonance imaging difference maps created from 183 patients, by classifying them into stable or unstable according to tumor evolution. The weak labels extracted from radiology reports allowed us to increase dataset size more than 3-fold, and improve VGG classification results from 75% to 82% AUC. Mixed training from scratch led to higher performance than fine-tuning or feature extraction. To assess generalizability, we ran inference on an open dataset (BraTS-2015: 15 patients, 51 difference maps), reaching up to 76% AUC. Overall, results suggest that medical imaging problems may benefit from smaller models and different TL strategies with respect to computer vision datasets, and that report-generated weak labels are effective in improving model performances. Code, in-house dataset and BraTS labels are released.Comment: This work has been submitted as Original Paper to a Journa

    Head Motion Parameters in fMRI Differ Between Patients with Mild Cognitive Impairment and Alzheimer Disease Versus Elderly Control Subjects

    Get PDF
    Motion artifacts are a well-known and frequent limitation during neuroimaging workup of cognitive decline. While head motion typically deteriorates image quality, we test the hypothesis that head motion differs systematically between healthy controls (HC), amnestic mild cognitive impairment (aMCI) and Alzheimer disease (AD) and consequently might contain diagnostic information. This prospective study was approved by the local ethics committee and includes 28 HC (age 71.0±6.9years, 18 females), 15 aMCI (age 67.7±10.9years, 9 females) and 20 AD (age 73.4±6.8years, 10 females). Functional magnetic resonance imaging (fMRI) at 3T included a 9min echo-planar imaging sequence with 180 repetitions. Cumulative average head rotation and translation was estimated based on standard fMRI preprocessing and compared between groups using receiver operating characteristic statistics. Global cumulative head rotation discriminated aMCI from controls [p<0.01, area under curve (AUC) 0.74] and AD from controls (p<0.01, AUC 0.73). The ratio of rotation z versus y discriminated AD from controls (p<0.05, AUC 0.71) and AD from aMCI (p<0.05, AUC of 0.75). Head motion systematically differs between aMCI/AD and controls. Since motion is not random but convoluted with diagnosis, the higher amount of motion in aMCI and AD as compared to controls might be a potential confounding factor for fMRI group comparisons. Additionally, head motion not only deteriorates image quality, yet also contains useful discriminatory information and is available for free as a "side product” of fMRI data preprocessing

    Multi-centre classification of functional neurological disorders based on resting-state functional connectivity.

    Get PDF
    BACKGROUND Patients suffering from functional neurological disorder (FND) experience disabling neurological symptoms not caused by an underlying classical neurological disease (such as stroke or multiple sclerosis). The diagnosis is made based on reliable positive clinical signs, but clinicians often require additional time- and cost consuming medical tests and examinations. Resting-state functional connectivity (RS FC) showed its potential as an imaging-based adjunctive biomarker to help distinguish patients from healthy controls and could represent a "rule-in" procedure to assist in the diagnostic process. However, the use of RS FC depends on its applicability in a multi-centre setting, which is particularly susceptible to inter-scanner variability. The aim of this study was to test the robustness of a classification approach based on RS FC in a multi-centre setting. METHODS This study aimed to distinguish 86 FND patients from 86 healthy controls acquired in four different centres using a multivariate machine learning approach based on whole-brain resting-state functional connectivity. First, previously published results were replicated in each centre individually (intra-centre cross-validation) and its robustness across inter-scanner variability was assessed by pooling all the data (pooled cross-validation). Second, we evaluated the generalizability of the method by using data from each centre once as a test set, and the data from the remaining centres as a training set (inter-centre cross-validation). RESULTS FND patients were successfully distinguished from healthy controls in the replication step (accuracy of 74%) as well as in each individual additional centre (accuracies of 73%, 71% and 70%). The pooled cross validation confirmed that the classifier was robust with an accuracy of 72%. The results survived post-hoc adjustment for anxiety, depression, psychotropic medication intake, and symptom severity. The most discriminant features involved the angular- and supramarginal gyri, sensorimotor cortex, cingular- and insular cortex, and hippocampal regions. The inter-centre validation step did not exceed chance level (accuracy below 50%). CONCLUSIONS The results demonstrate the applicability of RS FC to correctly distinguish FND patients from healthy controls in different centres and its robustness against inter-scanner variability. In order to generalize its use across different centres and aim for clinical application, future studies should work towards optimization of acquisition parameters and include neurological and psychiatric control groups presenting with similar symptoms

    Identifying 22q11.2 Deletion Syndrome and Psychosis Using Resting-State Connectivity Patterns

    Get PDF
    The clinical picture associated with 22q11.2 deletion syndrome (22q11DS) includes mild mental retardation and an increased risk of schizophrenia. While the clinical phenotype has been related to structural brain network alterations, there is only scarce information about functional connectivity in 22q11DS. However, such studies could lead to a better comprehension of the disease and reveal potential biomarkers for psychosis. A connectivity decoding approach was used to discriminate between 42 patients with 22q11DS and 41 controls using resting-state connectivity. The same method was then applied within the 22q11DS group to identify brain connectivity patterns specifically related to the presence of psychotic symptoms. An accuracy of 84% was achieved in differentiating patients with 22q11DS from controls. The discriminative connections were widespread, but predominantly located in the bilateral frontal and right temporal lobes, and were significantly correlated to IQ. An 88% accuracy was obtained for identification of existing psychotic symptoms within the patients group. The regions containing most discriminative connections included the anterior cingulate cortex (ACC), the left superior temporal and the right inferior frontal gyri. Functional connectivity alterations in 22q11DS affect mostly frontal and right temporal lobes and are related to the syndrome's mild mental retardation. These results also provide evidence that resting-state connectivity can potentially become a biomarker for psychosis and that ACC plays an important role in the development of psychotic symptoms

    The Multiscenario Multienvironment BioSecure Multimodal Database (BMDB)

    Get PDF
    A new multimodal biometric database designed and acquired within the framework of the European BioSecure Network of Excellence is presented. It is comprised of more than 600 individuals acquired simultaneously in three scenarios: 1) over the Internet, 2) in an office environment with desktop PC, and 3) in indoor/outdoor environments with mobile portable hardware. The three scenarios include a common part of audio/video data. Also, signature and fingerprint data have been acquired both with desktop PC and mobile portable hardware. Additionally, hand and iris data were acquired in the second scenario using desktop PC. Acquisition has been conducted by 11 European institutions. Additional features of the BioSecure Multimodal Database (BMDB) are: two acquisition sessions, several sensors in certain modalities, balanced gender and age distributions, multimodal realistic scenarios with simple and quick tasks per modality, cross-European diversity, availability of demographic data, and compatibility with other multimodal databases. The novel acquisition conditions of the BMDB allow us to perform new challenging research and evaluation of either monomodal or multimodal biometric systems, as in the recent BioSecure Multimodal Evaluation campaign. A description of this campaign including baseline results of individual modalities from the new database is also given. The database is expected to be available for research purposes through the BioSecure Association during 2008Comment: Published at IEEE Transactions on Pattern Analysis and Machine Intelligence journa
    corecore