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Abstract Motion artifacts are a well-known and frequent

limitation during neuroimaging workup of cognitive decline.

While head motion typically deteriorates image quality, we

test the hypothesis that head motion differs systematically

between healthy controls (HC), amnestic mild cognitive

impairment (aMCI) and Alzheimer disease (AD) and con-

sequently might contain diagnostic information. This pro-

spective study was approved by the local ethics committee

and includes 28 HC (age 71.0 ± 6.9 years, 18 females), 15

aMCI (age 67.7 ± 10.9 years, 9 females) and 20 AD (age

73.4 ± 6.8 years, 10 females). Functional magnetic reso-

nance imaging (fMRI) at 3T included a 9 min echo-planar

imaging sequence with 180 repetitions. Cumulative average

head rotation and translation was estimated based on stan-

dard fMRI preprocessing and compared between groups

using receiver operating characteristic statistics. Global

cumulative head rotation discriminated aMCI from controls

[p \ 0.01, area under curve (AUC) 0.74] and AD from

controls (p \ 0.01, AUC 0.73). The ratio of rotation z versus

y discriminated AD from controls (p \ 0.05, AUC 0.71) and

AD from aMCI (p \ 0.05, AUC of 0.75). Head motion

systematically differs between aMCI/AD and controls. Since

motion is not random but convoluted with diagnosis, the

higher amount of motion in aMCI and AD as compared to

controls might be a potential confounding factor for fMRI

group comparisons. Additionally, head motion not only

deteriorates image quality, yet also contains useful dis-

criminatory information and is available for free as a ‘‘side

product’’ of fMRI data preprocessing.
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Abbreviations

AD Alzheimer disease

aMCI Amnestic mild cognitive impairment

AUC Area under the curve

fMRI Functional magnetic resonance imaging

HC Healthy control

MMS Mini mental state

MRI Magnetic resonance imaging

PET Positron emission tomography

rs-fMRI Resting-state fMRI

ROC Receiver operating characteristic

Introduction

Head motion related artifacts are a well-known and fre-

quent problem in the neuroimaging workup of cognitive

decline deteriorating image quality (Ikari et al. 2012;

Sperling 2011). We assessed whether head motion sys-

tematically differs between amnestic mild cognitive

impairment (aMCI) and Alzheimer disease (AD) patients

as compared to healthy controls (HC). A potential sys-

tematic difference in head motion between groups would in

turn imply that head motion does not only deteriorate

image quality, but may actually contain useful discrimi-

natory information.

The early detection of Alzheimer disease (AD) and in

particular amnestic mild cognitive impairment (aMCI) is a

key clinical question, as promising therapeutic candidates

are currently being evaluated (for review see (Nitsch and

Hock 2008; Duara et al. 2009)). Recent studies indicate a

limited performance of these therapeutic candidates in

patients with clinically overt dementia (Holmes et al. 2008;

Lannfelt et al. 2008). This implies a need for early treat-

ment, which in turn implies a need for early diagnosis.

Mild cognitive impairment (MCI) represents a transition

zone between normal aging and very early dementia and is

characterized by selective memory deficits associated or

not with other cognitive dysfunctions (Petersen and Negash

2008). The definitions of MCI have substantially evolved

and changed over the last years, which goes beyond the

scope of this manuscript. We specifically focus on amnestic

MCI (aMCI), which is the most likely MCI subgroup to

eventually progress to clinically overt AD with an annual

rate of 10–15 % (Petersen 2004; Mariani et al. 2007),

whereas other MCI subgroups may remain stable or evolve

to other forms of dementia (Forlenza et al. 2009).

Multiple recent investigations assessed the performance

of various neuroimaging techniques for the early detection

of AD and MCI, including T1 derived grey matter voxel

based morphometry (Plant et al. 2010; Misra et al. 2009;

Fan et al. 2008), diffusion tensor imaging (DTI) derived

white matter properties (Haller et al. 2010b, 2013;

O’Dwyer et al. 2012), susceptibility derived iron deposition

(Haller et al. 2010a) and in particular functional MRI

(Mueller et al. 2011; Fox and Greicius 2010; Sperling

2011).

Head motion parameters are routinely estimated during

the data preprocessing steps of fMRI. These parameters are

typically used as non-explanatory co-variables for the data

analysis, yet are not specifically analyzed as discriminatory

parameters. In the current investigation, we tested the

hypothesis that aMCI and AD have increased head motion

parameters compared to HC. This analysis makes use of

already existing and thus freely available motion correction

parameters of fMRI data and might complement the results

of the ‘‘actual’’ fMRI analyses.

Materials and Methods

Participants

The institutional ethical committee of the University of

Basel, Switzerland, approved this prospective study and all

participants gave written informed consent prior to inclu-

sion. The study is in agreement with the Declaration of

Helsinki. All individuals were examined as described in

detail before (Monsch and Kressig 2010). The diagnosis

criteria for AD were based on the NINCDS-ADRDA criteria

(McKhann et al. 1984). The diagnosic criteria for aMCI were

based on the criteria by Winblad et al. (2004). Healthy

controls were recruited from the Basel Study on the Elderly.

They essentially underwent the same procedure as described

above (Monsch and Kressig 2010). The local memory clinic

prospectively and consecutively included 63 participants.

MR Imaging

MR imaging was performed on a 3T clinical routine whole

body MRI scanner (Verio, Siemens Medical Systems Er-

langen, Germany). Standard routine clinical imaging

included a 3DT1w (1mm3 isometric, 256 9 256 9 176

matrix), DTI (30 directions, b 1000). Additional sequences

(T1w, T2w, T2*, FLAIR) were acquired and analyzed to

exclude brain pathology such as ischemic stroke, subdural

hematomas or space-occupying lesions. T2 lesions were

analyzed using a simple visual rating scale of Fazekas

(Fazekas et al. 1987).

The 9 min fMRI echo planar imaging (EPI) scan cov-

ering the entire brain was acquired with the following

parameters: 64 9 48 matrix, 34 slices, voxel size

3.44 9 3.44 9 3.5 mm3, TE 12.3, 29.5, 46.8 and 64 ms,

TR 2,970 ms, 180 repetitions.
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MR Data Analysis

Data was preprocessed using standard parameters in SPM8.

All functional images were motion-corrected via realign-

ment to the mean image. The absolute values of the

instantaneous differences between motion correction

parameters for translation (X, Y and Z) and rotation (pitch

X, roll Y and yaw Z) were computed and summed across

the entire functional run per participant, yielding total

instantaneous translation in mm for the three translations

and radians for the three rotations. In the following, we

consider cumulative head motion parameters (i.e. the sum

of head motion over the 9 min acquisition time) for head

rotation (x,y,z) and head translation (x,y,z).

Statistical Analysis

Statistical analysis was performed in Graphpad Prism,

Version 5.0 (www.graphpad.com).

Results

Demographic and Clinical Data

We included 28 HC (age 71.0 ± 6.9 years, 18 females,

mini mental state MMS 29.2 ± 1.0), 15 aMCI (age

67.7 ± 10.9 years, 9 females, MMS 27.8 ± 1.5) and 20

AD (age 73.4 ± 6.8 years, 10 females, 24.6 ± 3.1). There

was no significant difference in age (parametric ANOVA)

or gender (non-parametric Kruskal–Wallis test) between

groups. Likewise, there was no significant difference (non-

parametric Kruskal–Wallis test) between groups with

respect to (Fazekas et al. 1987) T2 lesions score (HC

1.2 ± 0.9, aMCI 1.1 ± 0.8, AD 1.2 ± 0.9).

In contrast, there was a significant group difference in

the MMS (analysis of variance ANOVA p \ 0.0001), with

significant Bonferroni corrected pair-wise differences

between HC versus AD (p \ 0.0001) and aMCI versus AD

(p \ 0.0001).

Motion Correction Parameters

Concerning global accumulated head rotation (Fig. 1), the

data did not fulfill the assumption of normal distribution

(Shapiro–Wilk normality test) and were thus analyzed

using non-parametric Kruskal–Wallis group comparisons

and pair-wise Dunn’s multiple comparisons tests. There

was a significant group difference (p \ 0.001) as well as

significant pair-wise differences between aMCI versus HC

(p \ 0.05) and AD versus HC (p \ 0.05), as illustrated in

Fig. 2a. Receiver operator characteristics (ROC) signifi-

cantly discriminated (p \ 0.01) aMCI versus HC with an

area under the curve (AUC) of 0.74 (Fig. 3a), as well as

AD versus HC (p \ 0.01), AUC 0.73 (Fig. 3b). In contrast,

there was no significant difference between aMCI versus

AD in accumulated rotation.

Concerning head translation (Fig. 1b), the data did not

fulfill the assumption of normal distribution (Shapiro–Wilk

normality test). There were equivalent trends as compared

to head rotation (p = 0.06), yet no significant differences

(Fig. 3b).

AD patients had in particular strong rotation along the

z-axis (yaw), i.e. rotating the head in a left–right direction

like saying ‘‘no’’. We calculated the ratio of z-rotation

‘‘no’’ versus y-rotation (roll, or tilting the head to both

sides), as a within-subject normalization (Fig. 2c). These

data fulfilled the criteria of normal distribution (Shapiro–

Wilk normality test) and were analyzed using parametric

analysis of variance (ANOVA) group comparisons and

pair-wise Bonferroni’s multiple comparison tests. There

was a significant group effect (p \ 0.01), as well as sig-

nificant differences between HC versus AD (p \ 0.05) and

between aMCI versus AD (p \ 0.05).

ROC significantly discriminated (p \ 0.05) HC versus

AD with an AUC of 0.71 (Fig. 4b) and aMCI versus AD

(p \ 0.05) with an AUC of 0.75. In contrast, this parameter

did not discriminate HC versus aMCI.

Discussion

The current investigation is based on the observation that

head motion artifacts are very common during the neuro-

imaging workup of neurocognitive decline (Ikari et al.

2012). In agreement with our hypothesis, global head

motion was more pronounced in patients and discriminated

aMCI and AD from controls. Consequently, head motion

not only deteriorates image quality, yet also contains useful

discriminatory information. Head motion parameters are

routinely estimated during the data processing of fMRI

studies (Fox and Greicius 2010), available for free as a

‘‘side product’’ and might complement existing tests to

discriminated AD and aMCI from controls. The simple

global accumulated head rotation significantly (p \ 0.01)

discriminated aMCI versus HC with an area under the

curve (AUC) of 0.74 as well as AD versus controls

(p \ 0.01, AUC 0.73).

The major point of this paper is to demonstrate that head

motion not only deteriorates image quality in a random

fashion, but rather is convoluted in a systematic fashion

with clinical diagnosis. The main strength of the current

investigation is the use of the ‘‘freely available’’ motion

parameter in fMRI to discriminate aMCI and AD from

controls. The simple parameter of accumulated global head

rotation discriminated aMCI and AD from controls.
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Although these motion parameters are routinely estimated

during data processing of fMRI data, these parameters are

typically not specifically analyzed. Given this systematic

effect, adding motion parameters as an additional covariate

in the analysis of fMRI data may be prudent.

Our observation of increased head motion in aMCI and

AD in fMRI is in agreement with previous experience in

the field of fMRI (Sperling 2011) and positron emission

tomography (PET) scans, for example in the Japanese

Alzheimer disease neuroimaging initiative (J-ADNI) multi-

center study (Ikari et al. 2012). Interestingly, a recent

investigation demonstrated that head motion produces

substantial resting-state fMRI changes despite compensa-

tory spatial registration and regression of motion estimates

(Power et al. 2012). In particular, long-distance correla-

tions are decreased while short-distance correlations are

Fig. 1 Average head rotation (a) and translation (b) and standard deviations (black lines) for HC (green), aMCI (blue) and AD (red) separated

for x, y, z and average across all 3 axes (Color figure online)
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increased by head motion. As we observed systematic

difference in the amplitude of head motion between the

study groups, this implies that group differences in head

motion might actually represent a systematic confound for

rs-fMRI connectivity studies between controls, MCI and

AD subjects.

Due to the spatial constraints of the MRI table and the

head coil, some head motions are easier than others. In

particular, rotatory movements to the left and right (yaw,

like saying ‘‘no’’) and rotation up and down (pitch, like

saying ‘‘yes’’) are relatively easy, while left—right tilting

movements (roll, inclining the head sideways) or

Fig. 2 Illustrates the group average head motion parameters for

rotation (a), translation (b) as well as the ratio of yaw (rotation z)

versus roll (rotation y) in (c). Head rotation discriminated aMCI

(blue) from HC (green, p \ 0.05) and AD (red) from HC (p \ 0.05).

The ration of yaw/roll discriminated AD from HC (p \ 0.05) and AD

from aMCI (p \ 0.05) (Color figure online)

Fig. 3 The receiver operator characteristics (ROC) analysis of the head rotation discriminated aMCI from HC (p \ 0.01, a) and AD from HC

(p \ 0.01, b), while there was no significant difference between aMCI and AD (c)

Fig. 4 The ROC analysis of the ratio of yaw/roll discriminated AD versus HC (p \ 0.05, b) and AD versus aMCI (p \ 0.05, c) but not HC

versus aMCI (a)
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longitudinal translation movements are more restricted. In

agreement with these spatial constraints, rotation move-

ments were more pronounced than linear translation

movements in our data. As discussed above, the discrimi-

nation between aMCI versus controls is the clinically most

relevant parameter. Concerning the discrimination of AD

versus controls, the clinical diagnosis is oftentimes already

established in this advanced stage of the disease. The dis-

crimination between aMCI and AD was less evident in the

current data as both groups show considerable head

motion. In our sample, AD patients performed in particular

strong motion along the Z axis, i.e. right-left rotation of the

head or ‘‘no’’ movements. To relatively normalize this

‘‘no’’ motion per subject, we calculated the ratio between Z

rotation versus Y rotation (roll or tilting the head side-

ways). This parameter discriminated AD patients from

controls (p \ 0.05) as well as from aMCI (p \ 0.05).

Limitations

Major limitations of the current investigations include the

relatively small sample sizes per group, which is due to the

strict pre-selection of patients in a single-center study. Our

results should thus be confirmed in larger scale studies.

Moreover, the current investigation deliberately assessed

basic and simple global head movement. The exact origin

of the head motions are not assessed in detail in the current

investigation and may include decreased compliance,

increased anxiety, loss of fine motor coordination and other

factors. Future studies might determine whether more

detailed motion derived parameters such as speed of

acceleration/deceleration or frequency of oscillations may

also discriminate between different diseases, for example

other forms of dementia such as frontotemoral lobar

degeneration or other neurodegenerative diseases such as

Parkinson Disease taking into account that head motion

might be influenced by multiple factors including for

example medication.

Conclusions

The higher amount of motion in aMCI and AD as com-

pared to controls might be a potential confounding factor in

fMRI group comparisons. Moreover, head motion during

functional imaging of cognitive decline not only deterio-

rates image quality but also contains useful discriminatory

information. Motion correction parameters are available for

free as ‘‘side product’’ during the data preprocessing in

fMRI studies and may complement other parameters to

discriminate aMCI and AD from controls. More detailed

motion parameters might contain specific information in

various diseases, which remains to be elucidated in larger

scale studies.
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