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Abstract

The objective of this paper is to study the robustness of computation
of correlations under spatial constraints. The motivation of our paper is
the specific case of functional magnetic resonance (fMRI) brain imaging
data, where voxels are aggregated to compute correlations. In this paper
we show that the way the spatial components are aggregating to com-
pute correlation may have a strong influence on the resulting estimations.
We then propose various estimators which take into account this spatial
structure.

keywords correlation; aggregated data; familial correlations; serial correla-
tions

1 Introduction

The use of aggregated data is particularly common in various field of sciences.
In social sciences, both individual and organizational data are collected (Ostroff
1993). The objective is to evaluate the relationships among variables at different
level of analysis. For example, in (Ostroff 1993), the author took the example
of studying correlations between satisfaction and technology at two levels, indi-
vidual scores, denoted individual correlation, and when individuals are grouped
into organizations, also called organizational correlation. Depending on three
main factors mainly the measurement errors, the variance within group and
the variance-within ratios, the ratio of organizational correlation and individual
correlation was shown to take values between -1 and 2. This means that it is
crucial to identify the way the data are generated.

In the studies of familial data (Rosner et al. 1977), specific characteristics
are obtained for different families with different sizes. The quantification of
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family resemblance is studied in this context, with the estimation of sibling
correlations and/or parent-offspring correlations, see for a review (Donner and
Eliasziw 1991). Each data is composed with characteristics extract for families
with a mother and/or father and the children. The difficulties arise because of
the dependence between the children and the different number of children per
family. It was noted that correlation between the average of time series and the
average of correlations between all possible pairs of time series are not equal in
the majority of cases.

In psychology, (Vul et al. 2009) shows that the strength of relationship de-
pends on the reliability of the measurements. Finally, the problem of correlation
computation is also a common problem in ecology, geography, climate studies
. . . . The data collected in this field are attached to a spatial position and usu-
ally with spatial correlation. This problem was first reported by Student (1914),
and studied in (Clifford et al. 1989) for two spatial processes. Applications of
these methods can be found for example in the study of meteorological data
(Gunst 1995), in ecological data (Liebhold and Sharov 1998), in fMRI data (Ye
et al. 2011). The main difficulty in these analyses is to take into account the
spatial correlations in order to construct estimator of correlations and testing
procedures when the averaged variables are not independent.

We are facing analogous difficulties in brain imaging, in particular when
studying so-called functional connectivity. Functional connectivity of the brain
is estimated from observations using non invasive techniques such as electroen-
cephalography (EEG), magnetoencephalography (MEG) or fMRI. Each record-
ing provides time series associated to spatial locations within regions of the
brain. Functional connectomes, that is, graphs representing the estimated con-
nectivity, are then constructed by computing dependence between the time se-
ries. It has already been shown that computation of connectomes is affected
by three main parameters: the length of the acquisition, the number of regions
and the chosen frequency band. In addition, the number of subjects available
in the sample will also play a role in terms of group comparisons (Termenon
et al. 2016). Using fMRI data, we record thousand of voxels. Each region of the
brain is then associated to a given set of voxels. The idea is then to extract a
representative of the set of voxels to attach one time series to each region. The
most common approach is to take the average of the voxels. In this paper, we
question this choice by studying statistically the computation of correlation of
this average of voxels.

The paper is organized as follows. In a first part, we are motivating the
definition of a new spatial model of fMRI. Then, computations of correlations
are described. Based on simulations, we illustrate the good behavior of the
newly introduced estimators.

2



2 Definition of the proposed spatial model for
fMRI data

Let C denote a finite compact subset of indices of Zd. This subset C will play
the role of the set of indices of voxels of the brain when d = 3. The J regions of
interest of the brain are represented through their set of voxels denoted by Rj
for j = 1, . . . , N . The number of voxels in each region is denoted by #Rj = Nj .
So,

C = ∪Jj=1Rj and #C =

J∑
j=1

Nj .

For any i ∈ C, we assume observing the signal Yi(·) sampled at times t = 1, . . . , T
which can be decomposed as follows

Yi(t) = Xi(t) + εi(t) + e(t), (1)

where Xi(·) represents the signal of interest, εi(·) represents a noise contami-
nating locally the voxel i and the signal e(·) is a noise corrupting in the same
way all the voxels i ∈ C. We now make a few assumptions on these different
components. First, we assume that all the random variables are centered, the
signals Xi(·), εi(·) and e(·) are mutually independent and independent in time
and that the global noise is homoscedastic. This implies that for any i, i′ ∈ C
and s, t = 1, . . . , T (s 6= t)

E[Xi(t)] = E[εi(t)] = E[e(t)] = 0

E[Xi(s)Xi(t)] = E[εi(s)εi(t)] = E[e(s)e(t)] = 0

E[Xi(s)εi′(t)] = E[Xi(s)e(t)] = E[εi(s)e(t)] = 0

E[e(t)2] = σ2
e ,

Let us now describe the spatial nature of the signal and the local noise. For any
i, i′ ∈ C j, j′ = 1, . . . , J (j 6= j′) and for all t = 1, . . . , T , we assume that there
exists σj > 0, σe ≥ 0, rjj′ ∈ [−1, 1], ρii′ ∈ (0, 1], ηii′ ∈ [−1, 1] such that

E[Xi(t)Xi′(t)] =

{
σjσj′rjj′ if i ∈ Rj , i′ ∈ Rj′ , j 6= j′

σ2
jρii′ if i, i′ ∈ Rj

and
E[εi(t)εi′(t)] = σ2

εηii′ .

The parameter rjj′ represents the correlation between two signals of two dif-
ferent regions Rj and Rj′ and is called inter-correlation between regions Rj
and Rj′ in the following. The parameter ρii′ (resp. ηii′) represents the intra-
correlation between two signals (resp. the spatial correlation between two local
noises) inside a common region. We assume that inside each region, the sig-
nals of interest have positive intra-correlation and that for each time t and for
j = 1, . . . , J , (Xi(t), i ∈ Rj) (resp. (εi(t), i ∈ C)) is a stationary random field
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observed in Rj (resp. C). We furthermore assume that both the correlations
ρii′ (for any i, i′ ∈ Rj for some j) and ηii′ (for i, i′ ∈ C) depend only on the
(uniform) distance between the two voxels i and i′. For brevity, we still denote
ρ|i′−i| by ρii′ and η|i′−i| by ηii′ where for x ∈ Zd, the notation |x| stands for
the uniform norm. Our a priori is that the intra-correlation ρd is close to 1
for moderate distances d, meaning that close neighbors are strongly (positively)
correlated. For the local noise, we assume that the spatial correlation function
is such that η0 = 1 and ηd = 0 for d ≥ p. When p = 1, this of course means
that for any i, i′ ∈ C, i 6= i′, εi(t) and εi′(t) are uncorrelated.

Remarque 2.1. We assume that the random variables are independent in time.
This is not a too restrictive hypothesis, in particular, if the random variables
have long memory hypothesis, after a wavelet decomposition, the random vari-
ables can be approximated to be decorrelated in time for large wavelet scales. In
addition, assuming that the Xi’s are centered is coherent as it is a well-known
fact that a wavelet decomposition based on a wavelet mother with K vanishing
moments cancels out every polynomial trend with degree K − 1.

2.1 Objectives and issues

Given a parcellation of the brain, the objective is to estimate inter-correlations
for each pair of parcel. The estimator has to be non parametric, robust and
fast. In particular we do not want to focus on the intra-correlations, nor the
estimations of variances and correlations of the additional noises.

3 Inter-correlation estimators

3.1 Notation

Let Y1 = (Y1(1), . . . , Y1(T )) and Y2 = (Y2(1), . . . , Y2(T )) denote two samples
of length T and let ĉov(Y1,Y2), ĉor(Y1,Y2) and σ̂(Y1) denote respectively the
sample covariance between Y1 and Y2, the sample correlation between Y1 and
Y2 and the standard deviation of Y1.

In this section, we recall some known estimates of the inter-correlation pa-
rameter rjj′ (that we simply denote by r for brevity) for two regions of interest
Rj and Rj′ . We also introduce some new ones which can handle the problems
occurring when dealing with spatio-temporal data such as fMRI data.

To understand the limit of each estimator, we need some additional notation.
For any j = 1, . . . , J , we first define a ν-neighborhood as a subset of nν :=
(2ν + 1)d indices for which all indices are at distance ≤ ν from the center.

Then, for any ν-neighborhood V (ν ≥ 1) we let

ρ̄ν =
1

n2
ν

∑
i,i′∈V

ρ|i′−i| and η̄ν =
1

n2
ν

∑
i,i′∈V

η|i′−i| =
1

n2
ν

∑
i,i′∈V
|i′−i|<p

η|i′−i|.
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We also need the related notation where V corresponds to the entire region of
interest Rj

ρ̄(j) =
1

N2
j

∑
i,i′∈Rj

ρ|i′−i| and η̄(j) =
1

N2
j

∑
i,i′∈Rj
|i′−i|<p

η|i′−i|

If εi and εi′ are spatially uncorrelated for any i, i′ ∈ C (i 6= i′), then η̄ν = 1/nν
and η̄(j) = 1/Nj . Otherwise since we assume that ηd = 0 for d ≥ p, η̄ν =
O(1/nν) and η̄(j) = O(1/Nj). For moderate ν, it is expected that the intra-
correlations satisfy ρ̄ν is close to 1. However, ρ̄(j) can be significantly far from
1, especially for large regions of interest. Finally for more complex estimators
developed hereafter, we need the additional notation

ρ̄ν,δ =
1

n2
ν

∑
i∈V,i′∈V′

ρ|i′−i|

for two ν-neighborhoods V,V ′ (from the same region of interest) distant from δ
(i.e. d(V,V ′) = δ). Again, if ν and δ are not too large, we can expect that ρ̄ν,δ
is close to 1.

From Section 2, we may derive the following calculations. Let j, j′ ∈ {1, . . . , J}
two different indices. Let i ∈ Rj , i′ ∈ Rj ∪Rj′ .

cov(Yi(t), Yi′(t)) =

{
σjσj′rjj′ + σ2

εη|i′−i| + σ2
e if i ∈ Rj and i′ ∈ Rj′

σ2
jρ|i′−i| + σ2

εη|i′−i| + σ2
e if i, i′ ∈ Rj .

(2)

If Ȳj(t) denotes the spatial average signal at time t over the region Rj , i.e.
Ȳj(t) = N−1

j

∑
i∈Rj Yi(t), then for t = 1, . . . , T

Var(Ȳj(t)) = σ2
j ρ̄j + σ2

ε η̄j + σ2
e . (3)

Since, we assume the independence in time of the signals, the local noise and
the global noise most of the results presented in the next sections are straight-
forward. Without loss of generality, we intrinsically assume that d(Rj ,Rj′) ≥ p
which ensures that for any i ∈ Rj and i′ ∈ Rj′ , εi(t) and εi′(t) are uncorre-
lated. This slightly simplifies the numerator of r ca and r ac defined below by (5)
and (7).

3.2 Classical estimator : correlation of averages (method
ca)

In order to increase the signal-to-noise ratio, classical methods in fMRI or EEG
use to average or convolve with Gaussian kernel the signal in space. The aggre-
gated correlation estimator corresponds to the classic estimator considered for
example in Achard et al. (2006) by taking the correlation between the aggre-
gated variables corresponding to a pair of given groups:

r̂ ca =
ĉov(Ȳj , Ȳj′)

σ̂(Ȳj)σ̂(Ȳj′)
(4)
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Using (2) and (3), it can be shown that r̂ ca is a strongly consistent estimator
of r ca as T →∞ where

r ca =
σjσj′r + σ2

e

(σ2
j ρ̄

(j) + σ2
ε η̄

(j) + σ2
e)1/2(σ2

j′ ρ̄
(j′) + σ2

ε η̄
(j′) + σ2

e)1/2
. (5)

Even in absence of noise (σε = σe = 0), r̂ ca has the drawback to bias the
estimation because the average of correlations is not equal to the correlation
of the averages. In Achard et al. (2011), we demonstrated that, even without
noise, the correlation of averages is multiplied by the number of points taken in
the average. So when the group of voxels in the brain have different sizes, the
largest ones have higher correlation simply because of this bias mainly due to
the fact that for large regions ρ̄(j) can be far from 1.

3.3 Average of correlations (method ac)

This estimator defined by

r̂ ac =
1

NjNj′

∑
i∈Rj ,i′∈Rj′

ĉor(Yi,Yi′). (6)

clearly tends (almost surely) as T →∞ toward r ac given by

r ac =
σjσj′r + σ2

e

(σ2
j + σ2

ε + σ2
e)1/2(σ2

j′ + σ2
ε + σ2

e)1/2
. (7)

Another way to correct the size effect is to compensate the inter-correlation by
the intra-correlation. This leads to the following estimator:

r̂ ãc =
1

NjNj′

 ∑
i,i′∈Rj

ĉor(Yi,Yi′)
∑

i,i′∈Rj′

ĉor(Yi,Yi′)

1/2

r̂ ac. (8)

The two estimators (6) and (8) have the important property to remove the size
effect (since when σε = σe = 0, r ac = r). As it can be straightforwardly shown
that these two estimators tend to the same limit, we only focus in Sections 4,
we skip the estimator r̂ ãc.

We can underline that both estimators are very sensitive to (local and global)
noise. Indeed, with the presence of local noise, the variance of noise appears
directly in the denominator which is decreasing the values of correlation estima-
tions. In the sequel of this section, we introduce first estimators to be robust to
the local noise using either local average or replicated data. Then, we introduce
estimators to compensate the global noise by using 2 other decorrelated groups
of variables, and then we will combine the two to define estimators robust to
both local and global noise.
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3.4 Local correlation of averages (method `ca)

The following estimator is defined by averaging correlations between average of
variables belonging to two different regions on small neighborhood inside the
regions. Its aim is to reduce the local noise. As the choice of neighborhood to
average and the choice of pairs of neighborhood are arbitrary, we propose to
repeat draws of small neighborhood and to take the average of all computed

correlations. For b = 1, . . . , B, let V(b)
j (resp. V(b)

j′ ) be a ν-neighborhood of Rj
(resp. Rj′), then we define

r̂ `ca =
1

B

B∑
b=1

ĉor(ȲV(b)
j
, ȲV(b)

j′
). (9)

Since d(Rj , rj′) ≥ p then d(V(b)
j ,V(b)

j′ ) ≥ p for any b and r̂ `ca tends (almost

surely) as T →∞ towards r `ca

r `ca =
σjσj′r + σ2

e

(σ2
j ρ̄ν + σ2

e η̄ν + σ2
e)1/2(σ2

j′ ρ̄ν + σ2
e η̄ν + σ2

e)1/2
. (10)

When there is no global noise (σe = 0), we observe that r̂ `ca is more robust to
the local noise since η̄ν = O(n−1

ν ). However, it is important to choose moderate
ν otherwise ρ̄ν can deviate significantly from 1.

3.5 Replicates for correlations (method r)

In order to suppress the effect of local noise, we introduce a new estimator com-
puted using replicates within the same region and the estimator r̂ ac is corrected
by the correlation between the chosen replicates. This estimator, denoted by r̂R

(r for replicates), was first introduced by Bergholm et al. (2010), in the context
of image analysis. It is defined by

r̂R =
1

B

B∑
b=1

1
4

∑2
α,β=1 ĉor(Y

i
(b)
α
,Y

i′
(b)
β

)√
ĉor(Y

i
(b)
1
,Y

i
(b)
2

) ĉor(Y
i′

(b)
1
,Y

i′
(b)
2

)
(11)

where for b = 1, . . . , B, i
(b)
1 and i

(b)
2 belong to Rj , and are expected to verify

ρ
i
(b)
1 i

(b)
2
≈ 1. Respectively, i′

(b)
1 and i′

(b)
2 belong to Rj′ and are expected to verify

ρ
i′

(b)
1 i′

(b)
2
≈ 1.

Let us detail the convergence of r̂R. We assume that any b = 1, . . . , B,

|i(b)2 − i
(b)
1 | = |i′2

(b) − i′1
(b)| = δ for some fixed integer δ ≥ p. Since

1

4

2∑
α,β=1

ĉor(Y
i
(b)
α
,Y

i′
(b)
β

)
a.s.→ σjσj′rjj′ + σ2

e(
σ2
j + σ2

ε + σ2
e

)1/2 (
σ2
j′ + σ2

ε + σ2
e

)1/2
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and

ĉor(Y
i
(b)
1
,Y

i
(b)
2

)
a.s.→

σ2
jρδ + σ2

εηδ + σ2
e

σ2
j + σ2

ε + σ2
e

,

and since ηδ = 0, we obtain that r̂R converges almost surely towards rR as
T →∞ where

rR =
σjσj′r + σ2

e

(σ2
jρδ + σ2

e)1/2(σ2
j′ρδ + σ2

e)1/2
(12)

When σe = 0 and then choosing δ = p (so 1 if the local noise is spatially
independent) leads to rR = r

ρp
and we may hope that in this situation, ρp is

very close to 1. In other words, r̂R is an estimator robust to the size of the
regions of interest and robust to a local noise.

In the case of low signal-to-noise ratio, the quantity in the denominator
of (11) may be negative and the square root becomes undefined. We propose
then to combine the local averaging on small neighborhood and the introduction
of replicates to compensate for local noise corruption of signals.

3.6 Local average of replicates (method `r)

This estimator consists in combining the idea of replicates with the one consist-
ing in averaging locally the signals.

r̂ `R =
1

B

B∑
b=1

1
4

∑2
α,β=1 ĉor(ȲV(b)

jα

, ȲV(b)

j′
β

)√
ĉor(ȲV(b)

j1

, ȲV(b)
j2

) ĉor(ȲV(b)

j′1

, ȲV(b)

j′2

)
. (13)

Using arguments developed in Sections 3.4 and 3.5 then if we assume that the
distance between ν-neighborhoods involved in (13) is at least p, then it can be
shown r̂ `R is a strongly consistent estimator of r `R defined by

r `R =
σjσj′r + σ2

e

(σ2
j ρ̄ν,δ + σ2

e)1/2(σ2
j′ ρ̄ν,δ + σ2

e)1/2
(14)

When σe = 0, then letting δ = p reduces r `R to r
ρ̄ν,p

.

3.7 Use of a priori disconnected regions (method d based
on differences)

We now present an estimator which handles the problem of global noise, based
on the selection of two extra regions that are uncorrelated. This assumption is
realistic in the context of fMRI data where we are interested in the correlations
between cortical regions. Indeed, the volume recorded by the scanning may be
bigger, and the definition of extra regions is possible. In this case, if we want
to estimate the correlation between two regions, say Rj and Rj′ , the idea is
to assume the extra information that neither Rj nor Rj′ is connected to some
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regions Rk and Rk′ where k, k′ ∈ {1, . . . , J}\{j, j′} with k 6= k′ and we assume
in addition that Rk and Rk′ are also not connected. Then, we propose the

following estimator: for b = 1, . . . , B let i(b), i′
(b)

, k(b) and k′
(b)

be voxels of Rj ,
Rj′ , Rk and Rk′ .

r̂D =
1

B

B∑
b=1

c̃or(Yi(b) ,Yi′(b) ; Yk(b) ,Yk′(b)), (15)

where for four vectors Y1, Y2, Y3 and Y4 (with same length)

c̃or(Y1,Y2; Y3,Y4) =
ĉov(Y1 −Y3,Y2 −Y4)

ŝ(Y1,Y3,Y4) ŝ(Y2,Y3,Y4)
(16)

and where for three vectors U, V and W with same length

ŝ2(U,V,W) =
(
σ̂2(U−V) + σ̂2(U−W)− σ̂2(V −W)

)
/2.

The intuition of this estimate is quite simple. Assume that the local noise has
variance null. Since the noise e(·) is global, subtracting from Yi(b)(t) the value
Yk(b)(t) and from Yi′(b)(t) the value Yk′(b)(t) discards the global noise. And since,
the regions Rk and Rk′ are not correlated and not correlated to the other ones.
The numerator (for each b) is an estimate of σjσj′r. Then, we just have to
divide by estimates of σj (and σj′). We observe that this cannot be done using
simply σ̂2(Yi(b)−Yk(b)) which estimates σ2

j +σ2
k. This justifies the introduction

of ŝ2.
From a theoretical point of view, we can show that almost surely r̂D con-

verges almost surely as T →∞ towards rD given by

rD =
σjσj′r + τjj′(

σ2
j + 2σ2

ε + τj
)1/2 (

σ2
j′ + 2σ2

ε + τj′
)1/2

where

τjj′ = σjσk′rjk′ + σj′σkrj′k and τj = −σjσkrjk − σjσk′rjk′ + σkσk′rkk′ .

Since we assume a priori that the regions Rk and Rk′ are not connected each
other and to the other regions then τj = τj′ = τjj′ = 0 which reduces the
previous expression to

rD =
σjσj′r(

σ2
j + 2σ2

ε

)1/2 (
σ2
j′ + 2σ2

ε

)1/2
(17)

which in case of absence of local noise is nothing else than r.

3.8 Combinations of previous estimators: methods `d, rd,
`rd

The three following estimators extend respectively the methods `ca, r, `r using
the idea developed above to get rid of the global noise. We use the notation
presented in the previous sections. Theoretical results are also derived along
similar lines.
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Local averages and use of a priori disconnected regions:
method `d

This estimator given by

r̂ `D =
1

B

B∑
b=1

c̃or(ȲV(b)
j
, ȲV(b)

j′
; ȲV(b)

k

, ȲV(b)

k′
) (18)

is a strongly consistent estimator of r `D given by

r `D =
σjσj′r

(σ2
j + 2σ2

ε)1/2(σ2
j′ + 2σ2

ε)1/2
. (19)

Replicates and use of a priori disconnected regions: method
rd

This estimator given by

r̂RD =
1

B

B∑
b=1

1
4

∑2
α,β=1 c̃or(Y

i
(b)
α
,Y

i′
(b)
β

; Y
i
(b)
3
,Y

i
(b)
4

)√
c̃or(Y

i
(b)
1
,Y

i
(b)
2

; Yk(b) ,Yk′(b)) c̃or(Y
i′

(b)
1
,Y

i′
(b)
2

; Yk(b) ,Yk′(b))

(20)
is a strongly consistent estimator of rRD given by

rRD =
r

ρ̄δ
. (21)

Replicates, local averages and use of a priori disconnected
regions: method `rd

This estimator given by

r̂ `RD =
1

B

B∑
b=1

1
4

∑2
α,β=1 c̃or(ȲV(b)

jα

, ȲV(b)

j′
β

; ȲV(b)
k

, ȲV(b)

k′
)√

c̃or(ȲV(b)
j1

, ȲV(b)
j2

; ȲV(b)
k

, ȲV(b)

k′
) c̃or(ȲV(b)

j′1

, ȲV(b)

j′2

; ȲV(b)
k

, ȲV(b)

k′
)

(22)
is a strongly consistent estimator of r `RD given by

r `RD =
r

ρ̄ν,δ
. (23)

4 Simulations

In this section we investigate the finite sample properties of the estimators of
r according to different settings. We focus on the planar case (d = 2) and
only on two regions of interest, say Rj and Rj′ which contain respectively
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202 and 402 voxels. To implement the estimators r̂• for • = d, `d,rd, `rd we
also assume to observe the signals in two other regions Rk and Rk′ which are
disconnected each other and to the two regions of interest. We assume that
the signal, the local noise and the global noise follow Gaussian distribution.
The variances are set to the following values: σj = 1, σj′ = 2, σk = σk′ = 1.
Throughout the simulations the parameter r = rjj′ is fixed to 0.6, the sample
size T is set to 1000 and we set ηk = 0 for k ≥ 1 (i.e. εi(t) and εi′(t) are
uncorrelated). Finally, we consider the following spatial function for the intra-
correlation: ρ|i′−i| = max(1−|i′− i|/Kmax, rmin). In particular we consider two
different models for the intra-correlation:

• Model 1: Kmax = 300, rmin = 0.9.

• Model 2: Kmax = 100, rmin = 0.6.

Model 1 is model ling a region of interest where the voxels are well connected
while model 2 will be used to show the problems that could occur when two
voxels inside a common region are not as connected as they should be. Figure 1
shows the intra-correlation matrix for both these models.
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0.
7

0.
8

0.
9

1

 0
.6

5 

 0
.6

5 

 0
.7

 

 0
.7

 

 0
.7

5 

 0
.7

5 

 0
.8

 

 0
.8

 

 0
.8

5  0
.8

5 

 0
.9

 

 0
.9

 

 0
.9

5 

 0
.9

5 
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Figure 1: Intra-correlation matrices for the models 1 and 2 and for the largest
region containing 402 voxels. The bottom-left square corresponds to the intra-
correlation matrix of the smallest region containing 202 voxels.

4.1 Influence of the intra-correlation in absence of noise

We first study the properties of the estimators in absence of noise (σε = σe = 0).
Figure 2 shows boxplots based on 500 replications of the general model (1) with
parameters described previously. Figure 2 (with σε = σe = 0) shows that when
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the intra-correlation within each regionRj andRj′ is high for any pair of voxels,
then the estimates of r are quite satisfactory even if we can already observe a
slight bias for the method ca. However, when the model 2 is considered, the
bias of the latter method is significant. It is to be noticed that in terms of
variance the methods based on replicates (i.e. methods r, `r) are as efficient as
the methods ac and `ca. The methods based on the a priori knowledge of two
other disconnected regions (methods based on “differences”, i.e. the methods
d, `d, rd and `rd) have higher dispersion than the other ones. Finally, we also
observe that for the “complex” methods `r and `rd based on local averages
generate a more important bias than other methods. This bias is clearly smaller
than the one observed for the method ca and illustrates the following fact: when
we suspect that the intra-correlation matrix is not very well concentrated on the
diagonal then the size of the neighborhood (ν in the definition of the estimators)
should be chosen sufficiently small.
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Figure 2: Boxplots of estimates of the inter-correlation parameter r based on
500 replications of the general model (1) for the models 1 and 2 of the intra-
correlation matrix. Situations with no noise, local noise or global noise are
considered with different levels of signal to noise ratio.
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4.2 Influence of the local noise and global noise

We now turn to study the influence of a local noise or a global noise are also
illustrated in Figure 2. The variances of the local noise or the global noise are
parameterized by fixing the signal-to-noise ratio: when for instance σe = 0, we
fixed σ2

ε as follows

SNRε = 10 log10

(
min(σ2

j , σ
2
j′)

σ2
ε

)
⇔ σ2

ε = 10−SNRε/10 min(σ2
j , σ

2
j′).

When σε 6= 0 and σe = 0, as expected, Figure 2 shows that the methods based
on replicates are able to estimate correctly the inter-correlation parameter r
and these methods remain efficient whatever the value of the SNR and for both
models of the intra-correlation matrix. The methods ac, `ca, d and `d are
strongly affected by this additional local noise and exhibit a high negative bias.
As explained in Section 3.2, the method ca which averages the signals in the
regions Rj and Rj′ is able to reduce the effect of the local noise.

Now, focusing on Figure 2 when σε = 0 and σe 6= 0, which corresponds to
situations where there is only a global noise, we observe that the higher the
SNRe the higher the positive bias for all the methods except the ones which
were expected to handle the global noise, namely the methods d, `d, rd and
`rd. It is also to be noticed that the dispersion of all the methods do not seem
to be very affected by this extra noise.

5 Conclusion

In this paper we illustrate the effect of averaged data on estimations of correla-
tion when two noises are present, local and global noise. The use of the classical
correlation of averages is perturbed by the presence of these noises in addition
to the presence of within correlations. We proposed alternative estimators in-
cluding correction terms to compensate the intra-correlations, local and global
noises. The performances of these estimators are illustrated on simulations.
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