10 research outputs found
Comparison of different density functional theory methods for the calculation of vibrational circular dichroism spectra
The determination of the absolute configuration (AC) of an organic molecule is still a challenging task for which the combination of spectroscopic with quantum-mechanical methods has become a promising approach. In this study, we investigated the accuracy of DFT methods (480 overall combinations of 15 functionals, 16 basis sets, and 2 solvation models) to calculate the VCD spectra of six chiral organic molecules in order to benchmark their capability to facilitate the determination of the AC
Antisalmonellal Activities of Extracts, Fractions, Compounds and Semi-synthetic Flavonoid Derivatives from Tristemma hirtum P. Beauv (Melastomataceae)
The development and spread of resistance to currently available antibiotics is a major drawback in the treatment
of microbial infections. Salmonellosis for example remains among the most common cause of morbidity and mortality in
developing countries. This study aimed to evaluate the antisalmonellal potential of extracts, fractions, isolated compounds and
semi-synthetic flavonoids from Tristemma hirtum P. Beauv. Bioguided fractionation by column chromatography of the EtOAc
and n-BuOH fractions led to the isolation of eleven compounds including two new esterified glucuronide flavonoids namely:
luteolin-3′-O-β-D-glucuronopyranosylbutyl ester (1), a mixture of compound 1 and quercetin-3-O-β-D-glucuronopyranosylbutyl
ester (2). Chemical transformation mainly based on the prenylation of 6-hydroxyapigenin-7-O-β-D-glucopyranoside (5)
afforded four new semi-synthetic flavonoid derivatives namely: 6, 4'-O-diprenylapigenin-7-O-β-D-glucopyranoside (5a), 8-Cprenyl-
6, 4'-O-diprenylapigenin-7-O-β-D-glucopyranoside (5b), 8-C-prenyl-4'-O-prenylapigenin-7-O-β-D-glucopyranoside (5c),
4'-O-prenylapigenin-7-O-β-D-glucopyranoside (5d). The chemical structures of these compounds were assigned using NMR
techniques, mass spectrometry and by comparison of their data with reported ones. The antisalmonellal activity was assessed
by determining the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) using serial
microdilution methods. The results showed that the MeOH extract and EtOAc fraction were active against all the bacteria
tested with MICs ranging from 24 to 1536 μg/mL. Seven isolated compounds and three semi-synthetic compounds tested
showed MIC values ranging from 16 to 256 μg/mL. Compounds 1, 3, 5a, 5c and 11 displayed the most potent antisalmonellal
properties but were generally less potent than those of reference drugs. The activity of extracts and isolated compounds could
be used as the starting point for the development of alternative phytodrugs against salmonellosi
New cysteine protease inhibitors : electrophilic (het)arenes and unexpected prodrug identification for the trypanosoma protease rhodesain
Electrophilic (het)arenes can undergo reactions with nucleophiles yielding π- or Meisenheimer (σ-) complexes or the products of the SNAr addition/elimination reactions. Such building blocks have only rarely been employed for the design of enzyme inhibitors. Herein, we demonstrate the combination of a peptidic recognition sequence with such electrophilic (het)arenes to generate highly active inhibitors of disease-relevant proteases. We further elucidate an unexpected mode of action for the trypanosomal protease rhodesain using NMR spectroscopy and mass spectrometry, enzyme kinetics and various types of simulations. After hydrolysis of an ester function in the recognition sequence of a weakly active prodrug inhibitor, the liberated carboxylic acid represents a highly potent inhibitor of rhodesain (Ki = 4.0 nM). The simulations indicate that, after the cleavage of the ester, the carboxylic acid leaves the active site and re-binds to the enzyme in an orientation that allows the formation of a very stable π-complex between the catalytic dyad (Cys-25/His-162) of rhodesain and the electrophilic aromatic moiety. The reversible inhibition mode results because the SNAr reaction, which is found in an alkaline solvent containing a low molecular weight thiol, is hindered within the enzyme due to the presence of the positively charged imidazolium ring of His-162. Comparisons between measured and calculated NMR shifts support this interpretation
Ein neues bakterielles, von Adenosin abgeleitetes Nukleosid als Beispiel für RNA-Modifikationsschäden
Die Bereiche RNA-Modifikation und RNA-Schaden weisen beide eine Vielzahl nicht-kanonischer Nukleosidstrukturen auf. Während sich RNA-Modifikationen zur Verbesserung der RNA-Funktion entwickelt haben, impliziert die Bezeichnung RNA-Schaden negative Auswirkungen. Auf Grundlage der Markierung mit stabilen Isotopen und Massenspektrometrie berichten wir von der Identifizierung und Charakterisierung von 2-Methylthio-1,N6-ethenoadenosin (ms2ϵA), welches mit 1,N6-Ethenoadenin, einer Läsion, die durch Exposition von Nukleinsäuren gegenüber alkylierenden Chemikalien in vivo entsteht, verwandt ist. Im Gegensatz dazu zeigte ein ausgefeiltes Konzept zur Isopren-Markierung, dass die Biogenese von ms2ϵA die Spaltung eines Prenylrests in der bekannten transfer-RNA (tRNA)-Modifikation 2-Methylthio-N6-isopentenyladenosin (ms2i6A) beinhaltet. Die relative Häufigkeit von ms2ϵA in tRNAs von translatierenden Ribosomen lässt eine verminderte Funktionalität im Vergleich zur ursprünglichen RNA-Modifikation vermuten, wodurch die Natur der neuen Struktur in einer neu wahrgenommenen Überschneidung der beiden zuvor getrennten Bereiche, nämlich ein RNA-Modifikationsschaden, begründet wird
A Photoredox-Catalyzed Four Component Reaction for the Atom-Efficient Synthesis of Complex Secondary Amines
The one-pot sulfonylation/aminoalkylation of styrene derivatives furnishing highly substituted gamma-sulfonylamines was accomplished through a photoredox-catalyzed four-component reaction. Apart from one molecule of water and the sodium counterion of the sulfinate, all atoms of the starting materials are transferred to the final product, rendering this process highly atom-efficient. The operationally simple protocol allows for the simultaneous formation of three new single bonds (C–S, C–N, and C–C) and therefore grants rapid access to structurally diverse products. The reaction proceeds under mild conditions in aqueous acetonitrile and shows a broad scope, including natural products and drug-like molecules
Visible Light-Induced Sulfonylation/Arylation of Styrenes in a Double Radical Three-Component Photoredox Reaction
Simultaneous sulfonylation/arylation of styrene derivatives is achieved in a photoredox-catalyzed three-component reaction using visible light. A broad variety of difunctionalized products is accessible in mostly excellent yields and high diastereoselectivity. The developed reaction is scalable and suitable for the modification of styrene-functionalized biomolecules. Mechanistic investigations suggest the transformation to be operating through a designed sequence of radical formation and radical combination.<br /
Mimonoside D: a new triterpenoid saponin from Sauvalle (Fabaceae).
A new triterpenoid saponin (Mimonoside D: 3-O-α-L-arabinopyranosyl-3β-hydroxyolean-12-en-28-oic acid 28-O-β-D-xylopyranosyl-(1→2)-β-D- glucopyranoside ester (1)) was isolated from the aerial parts of Mimosa diplotricha Sauvalle together with nine known compounds: 7,4'-dihydroxyflavone (2), kaempferol (3), lupeol (4), betulinic acid (5), β-sitosterol (6), β-sitosterol-3-O-β-D-glucopyranoside (7), lutein (8), 5,2'-dihydroxy-7,4',5'-trimethoxyflavone (9) and vitexin (10). Their structures were elucidated on the basis of spectroscopic (1 D and 2 D nuclear magnetic resonance) and high-resolution mass spectrometric data as well as by comparison of their spectral data with those of related compounds. Compounds 2, 7 and 8 had already been isolated from M. diplotricha, while compounds 3, 4, 5 and 6 have been isolated from other Mimosa species. Compound 2 moderately inhibited Proteus mirabilis (MIC = 32 µg/mL), weakly inhibited Pseudomonas aeruginosa (MIC = 64 µg/mL) and very weakly inhibited Staphylococcus aureus (MIC = 128 µg/mL) and Enterococus faecalis (MIC = 128 µg/mL)
Protective Effects of Extracts, Isolated Compounds from Desmodium uncinatum and Semi-Synthetic Isovitexin Derivatives against Lipid Peroxidation of Hepatocyte’s Membranes
Lipid peroxidation plays a pivotal role in the pathogenicity and maintenance of hepatitis. Thus, substances protecting hepatocyte membranes from lipid
peroxidation are of great importance in the management of hepatotoxicity and hepatitis. The present work deals with the in vitro hepatoprotective activity of the methanol extract of Desmodium uncinatum, its sub-fractions, the major isolated compounds and some of their semi-synthetic derivatives in order to study structure activity relationships. Using hydrogen peroxide (H2O2)-induced lipid peroxidation of hepatocyte membranes as a model, the
hepatoprotective-guided phytochemical survey of the methanol extract of aerial parts of D. uncinatum was carried out by successive column chromatography. One of the most active compounds (Isovitexin) was chemically transformed to yield new semi-synthetic. The identification of isolated and semi-synthetic compounds was performed using NMR techniques, mass spectrometry and by comparison of their data with those reported in the literature.
The n-butanol fraction was the most effective (IC50: 22.9 μg/mL) compared to the crude methanol extract (IC50: 43.6 μg/mL) and other fractions. The n-butanol sub-fractions FA (containing non-phenolic compounds) and FB (mainly containing phenolic compounds) exhibited respective IC50 of 14.36 and 128.2 μg/ml. Purification of FA yielded 3-O-β-D-glucopyranosyl-β-sitosterol (1), 3-O-β-D- 2-acetyl-amino-2-deoxyglucopyranoxyloleanoic acid (2), (2S, 3S, 4R, 7R, 8Z)-1-O-β-D-glucopyranosyl-2-[(R)-2'-hydroxyarachidoylamino]-docosan-8-ene-3,4,7-triol (4), spiraeamide (5), mannitol (6), while FB afforded essentially three C-glycosylflavonoids namely isovitexin (7), vitexin (8) and vicenin-3 (9). Chemical transformations (methylation, allylation and prenylation) of isovitexin afforded five new semi-synthetic derivatives: 4',5,7-Otrimethylisovitexin (10), 4'-O-allylisovitexin (11), 4',7-O-diallylisovitexin
(12), 4'-O-prenylisovitexin (13) and 8-C-prenyl-4',7-O-diprenylisovitexin (14). The screening of these derivatives revealed that allylation did not significantly affect the hepatoprotective activity while methylation, prenylation, number and position of sugar moieties on the A ring of flavonoids significantly reduced it. Results demonstrated that the n-butanol fraction obtained from the methanol extract of Desmdium uncinatum may possess hepatoprotective activity due to its content in C-glycosylflavonoids and cerebrosides. Hydroxyl groups in C-glycosylflavonoids are important for their lipid peroxidation inhibitory activity
Hepatoprotective effects of extracts, fractions and compounds from the stem bark of Pentaclethra macrophylla Benth: Evidence from in vitro and in vivo studies
Aim: To identify the bioactive hepatoprotective components of the ethanol extract of Pentaclethra macrophylla stem bark using in vitro and in vivo approaches. Methods: The bioguided-fractionation of the ethanol extract was based on the substances’ capacity to prevent in vitro, the lipid peroxidation of hepatocytes’ membranes induced by hydrogen peroxide. For the in vivo hepatoprotective test, mice were treated orally with the ethyl acetate (EtOAc) fraction of the ethanol extract at doses of 50 and 75 mg/kg/day for one week and subjected to d-galactosamine/lipopolysaccharide (GaIN/LPS)-induced hepatotoxicity. Blood samples were collected for alanine aminotransferase (ALAT), aspartate aminotransferase (ASAT), TNF-α and IL-1β assays. The liver was harvested for histological and biochemical (proteins, glutathione (GSH), catalase and superoxide dismutase (SOD)) analysis. Results: The ethanol extract and fractions induced concentration-dependent inhibition of lipid peroxidation (IC50: 3.21–48.90 μg/mL) greater than that of silymarin (IC50: 117.4 μg/mL). The purification of the sub-fractions of EtOAc fraction yielded: (7R)-7-hydroxyhexacosanoic acid (1), (7R)-1-(7-hydroxyhexacosanoyl) glycerol (2), bergenin (3), 11-O-galloylbergenin (4), 2-hydroxymethyl-5-(2-hydroxypropan-2-yl)phenol (5), β-sitosterol 3-O-β-d-glucopyranosyl (6) and β-sitosterol (7)), among which 11-O-galloylbergenin (IC50:1.8 μg/mL) was the most effective. The EtOAc fraction significantly reduced the serum level of ALAT, ASAT and TNF-α in vivo. This EtOAc fraction increased the liver protein content and protected the liver against structural damages, but did not boost the endogenous antioxidant parameters. Conclusion: The stem bark of Pentaclethra macrophylla possesses hepatoprotective effects that may result from its capacity to inhibit lipid peroxidation and could be attributed to its active components 3, 4 and 2