55 research outputs found

    Using geophysical techniques to characterize tillage effect on soil properties

    Get PDF
    Tillage practices influence physical, chemical, and biological soil properties, which also affect soil quality and consequently plant growth. In this study, the main objective was to evaluate the effect of different tillage systems on soil physical properties by using geophysical methods, namely, ground-penetrating radar (far-field and near-field GPR), capacitance probes (ThetaProbe and 5TE), electromagnetic induction (EMI) (Profiler and EM38), soil sampling, and by soil penetrometer. Since 2005, three contrasting tillage systems were applied on different plots of an agricultural field: i) conventional tillage (CT) with mouldboard ploughing to 27 cm depth, ii) deep loosening tillage (DL) with a heavy tine cultivator to 30 cm depth, and iii) reduced tillage (RT) with a spring tine cultivator to 10 cm depth. The geophysical and soil strength measurements were performed in April 2010. We observed that tillage influences the soil resistance (deeper tillage decreases soil resistance), which could be partly seen in the radar data. Soil water content reference measurements (capacitance probes and soil sampling) were in a relatively good agreement with the water content estimates from far-field GPR. We also observed that the tillage influences surface water content. Mean surface water content was significantly lower for CT than for DL and RT, which was partly explained by lower macropore connectivity between the topsoil and the deeper layers after conventional tillage. This study confirms the potential of GPR and EMI sensors for soil physical properties determination at the field scale and for the characterization of agricultural management practices

    A Mild Form of SLC29A3 Disorder: A Frameshift Deletion Leads to the Paradoxical Translation of an Otherwise Noncoding mRNA Splice Variant

    Get PDF
    We investigated two siblings with granulomatous histiocytosis prominent in the nasal area, mimicking rhinoscleroma and Rosai-Dorfman syndrome. Genome-wide linkage analysis and whole-exome sequencing identified a homozygous frameshift deletion in SLC29A3, which encodes human equilibrative nucleoside transporter-3 (hENT3). Germline mutations in SLC29A3 have been reported in rare patients with a wide range of overlapping clinical features and inherited disorders including H syndrome, pigmented hypertrichosis with insulin-dependent diabetes, and Faisalabad histiocytosis. With the exception of insulin-dependent diabetes and mild finger and toe contractures in one sibling, the two patients with nasal granulomatous histiocytosis studied here displayed none of the many SLC29A3-associated phenotypes. This mild clinical phenotype probably results from a remarkable genetic mechanism. The SLC29A3 frameshift deletion prevents the expression of the normally coding transcripts. It instead leads to the translation, expression, and function of an otherwise noncoding, out-of-frame mRNA splice variant lacking exon 3 that is eliminated by nonsense-mediated mRNA decay (NMD) in healthy individuals. The mutated isoform differs from the wild-type hENT3 by the modification of 20 residues in exon 2 and the removal of another 28 amino acids in exon 3, which include the second transmembrane domain. As a result, this new isoform displays some functional activity. This mechanism probably accounts for the narrow and mild clinical phenotype of the patients. This study highlights the ‘rescue’ role played by a normally noncoding mRNA splice variant of SLC29A3, uncovering a new mechanism by which frameshift mutations can be hypomorphic

    Estimating Forest Structure from UAV-mounted LiDAR Point CloudUsing Machine Learning

    No full text
    Monitoring the structure of forest stands is of high importance for forest managers to help them in maintaining ecosystem services. For that purpose, Unmanned Aerial Vehicles (UAVs) open new prospects, especially in combination with Light Detection and Ranging (LiDAR) technology. Indeed, the shorter distance from the Earth’s surface significantly increases the point density beneath the canopy, thus offering new possibilities for the extraction of the underlying semantics. For example, tree stems can now be captured with sufficient detail, which is a gateway to accurately locating trees and directly retrieving metrics—e.g., the Diameter at Breast Height (DBH). Current practices usually require numerous site-specific parameters, which may preclude their use when applied beyond their initial application context. To overcome this shortcoming, the machine learning Hierarchical Density-Based Spatial Clustering of Application of Noise (HDBSCAN) clustering algorithm was further improved and implemented to segment tree stems. Afterwards, Principal Component Analysis (PCA) was applied to extract tree stem orientation for subsequent DBH estimation. This workflow was then validated using LiDAR point clouds collected in a temperate deciduous closed-canopy forest stand during the leaf-on and leaf-off seasons, along with multiple scanning angle ranges. The results show that the proposed methodology can correctly detect up to 82% of tree stems (with a precision of 98%) during the leaf-off season and have a Maximum Scanning Angle Range (MSAR) of 75 degrees, without having to set up any site-specific parameters for the segmentation procedure. In the future, our method could then minimize the omission and commission errors when initially detecting trees, along with assisting further tree metrics retrieval. Finally, this research shows that, under the study conditions, the point density within an approximately 1.3-meter height above the ground remains low within closed-canopy forest stands even during the leaf-off season, thus restricting the accurate estimation of the DBH. As a result, autonomous UAVs that can both fly above and under the canopy provide a clear opportunity to achieve this purpose
    corecore