143 research outputs found

    A Rapidly Spinning Black Hole Powers the Einstein Cross

    Get PDF
    Observations over the past 20 years have revealed a strong relationship between the properties of the supermassive black hole (SMBH) lying at the center of a galaxy and the host galaxy itself. The magnitude of the spin of the black hole will play a key role in determining the nature of this relationship. To date, direct estimates of black hole spin have been restricted to the local Universe. Herein, we present the results of an analysis of \sim 0.5 Ms of archival Chandra observations of the gravitationally lensed quasar Q 2237+305 (aka the "Einstein-cross"), lying at a redshift of z = 1.695. The boost in flux provided by the gravitational lens allows constraints to be placed on the spin of a black hole at such high redshift for the first time. Utilizing state of the art relativistic disk reflection models, the black hole is found to have a spin of a=0.740.03+0.06a_* = 0.74^{+0.06}_{-0.03} at the 90% confidence level. Placing a lower limit on the spin, we find a0.65a_* \geq 0.65 (4σ\sigma). The high value of the spin for the 109 M\rm \sim 10^9~M_{\odot} black hole in Q 2237+305 lends further support to the coherent accretion scenario for black hole growth. This is the most distant black hole for which the spin has been directly constrained to date.Comment: 5 pages, 3 figures, 1 table, formatted using emulateapj.cls. Accepted for publication in ApJ

    What is on Tap? The Role of Spin in Compact Objects and Relativistic Jets

    Get PDF
    We examine the role of spin in launching jets from compact objects across the mass scale. Our work includes a total of 37 Seyferts, 11 stellar-mass black holes, and 13 neutron stars. We find that when the Seyfert reflection lines are modeled with Gaussian line features (a crude proxy for inner disk radius and therefore spin), only a slight inverse correlation is found between the Doppler-corrected radio luminosity at 5 GHz (a proxy for jet power) and line width. When the Seyfert reflection features are fit with relativistically-blurred disk reflection models that measure spin, there is a tentative positive correlation between the Doppler-corrected radio luminosity and the spin measurement. Further, when we include stellar-mass black holes in the sample, to examine the effects across the mass scale, we find a slightly stronger correlation with radio luminosity per unit mass and spin, at a marginal significance (2.3 sigma confidence level). Finally, when we include neutron stars, in order to probe lower spin values, we find a positive correlation (3.3 sigma confidence level) between radio luminosity per unit mass and spin. Although tentative, these results suggest that spin may have a role in determining the jet luminosity. In addition, we find a slightly more significant correlation (4.4 sigma confidence level) between radio luminosity per Bolometric luminosity and spin, using our entire sample of black holes and neutrons stars. Again, although tentative, these relations point to the possibility that the mass accretion rate, i.e. Bolometric luminosity, is also important in determining the jet luminosity, in addition to spin. Our analysis suggests that mass accretion rate and disk or coronal magnetic field strength may be the "throttle" in these compact systems, to which the Eddington limit and spin may set the maximum jet luminosity that can be achieved.Comment: 14 pages, 13 Figures, ApJ Accepte

    The Broadband XMM-Newton and NuSTAR X-ray Spectra of Two Ultraluminous X-ray Sources in the Galaxy IC 342

    Get PDF
    We present results for two Ultraluminous X-ray Sources (ULXs), IC 342 X-1 and IC 342 X-2, using two epochs of XMM-Newton and NuSTAR observations separated by \sim7 days. We observe little spectral or flux variability above 1 keV between epochs, with unabsorbed 0.3--30 keV luminosities being 1.040.06+0.08×10401.04^{+0.08}_{-0.06} \times 10^{40} erg s1^{-1} for IC 342 X-1 and 7.40±0.20×10397.40\pm0.20 \times 10^{39} erg s1^{-1} for IC 342 X-2, so that both were observed in a similar, luminous state. Both sources have a high absorbing column in excess of the Galactic value. Neither source has a spectrum consistent with a black hole binary in low/hard state, and both ULXs exhibit strong curvature in their broadband X-ray spectra. This curvature rules out models that invoke a simple reflection-dominated spectrum with a broadened iron line and no cutoff in the illuminating power-law continuum. X-ray spectrum of IC 342 X-1 can be characterized by a soft disk-like black body component at low energies and a cool, optically thick Comptonization continuum at high energies, but unique physical interpretation of the spectral components remains challenging. The broadband spectrum of IC 342 X-2 can be fit by either a hot (3.8 keV) accretion disk, or a Comptonized continuum with no indication of a seed photon population. Although the seed photon component may be masked by soft excess emission unlikely to be associated with the binary system, combined with the high absorption column, it is more plausible that the broadband X-ray emission arises from a simple thin blackbody disk component. Secure identification of the origin of the spectral components in these sources will likely require broadband spectral variability studies.Comment: 12 pages, 11 figures, 5 Tables, Accepted for publication in The Astrophysical Journa

    A NuSTAR observation of the reflection spectrum of the low mass X-ray binary 4U 1728-34

    Get PDF
    We report on a simultaneous NuSTAR and Swift observation of the neutron star low-mass X-ray binary 4U 1728-34. We identified and removed four Type I X-ray bursts during the observation in order to study the persistent emission. The continuum spectrum is hard and well described by a black body with kT=kT= 1.5 keV and a cutoff power law with Γ=\Gamma= 1.5 and a cutoff temperature of 25 keV. Residuals between 6 and 8 keV provide strong evidence of a broad Fe Kα\alpha line. By modeling the spectrum with a relativistically blurred reflection model, we find an upper limit for the inner disk radius of Rin2RISCOR_{\rm in}\leq2 R_{\rm ISCO}. Consequently we find that RNS23R_{\rm NS}\leq23 km, assuming M=1.4{\mbox{\rm\,M_{\mathord\odot}}} and a=0.15a=0.15. We also find an upper limit on the magnetic field of B2×108B\leq2\times10^8 G.Comment: 9 pages, 8 figure

    NuSTAR observations of the powerful radio-galaxy Cygnus A

    Get PDF
    We present NuSTAR observations of the powerful radio galaxy Cygnus A, focusing on the central absorbed active galactic nucleus (AGN). Cygnus A is embedded in a cool-core galaxy cluster, and hence we also examine archival XMM-Newton data to facilitate the decomposition of the spectrum into the AGN and intracluster medium (ICM) components. NuSTAR gives a source-dominated spectrum of the AGN out to >70keV. In gross terms, the NuSTAR spectrum of the AGN has the form of a power law (Gamma~1.6-1.7) absorbed by a neutral column density of N_H~1.6x10^23 cm^-2. However, we also detect curvature in the hard (>10keV) spectrum resulting from reflection by Compton-thick matter out of our line-of-sight to the X-ray source. Compton reflection, possibly from the outer accretion disk or obscuring torus, is required even permitting a high-energy cutoff in the continuum source; the limit on the cutoff energy is E_cut>111keV (90% confidence). Interestingly, the absorbed power-law plus reflection model leaves residuals suggesting the absorption/emission from a fast (15,000-26,000km/s), high column-density (N_W>3x10^23 cm^-2), highly ionized (xi~2,500 erg cm/s) wind. A second, even faster ionized wind component is also suggested by these data. We show that the ionized wind likely carries a significant mass and momentum flux, and may carry sufficient kinetic energy to exercise feedback on the host galaxy. If confirmed, the simultaneous presence of a strong wind and powerful jets in Cygnus A demonstrates that feedback from radio-jets and sub-relativistic winds are not mutually exclusive phases of AGN activity but can occur simultaneously.Comment: 13 pages; accepted for publication in The Astrophysical Journa

    No Time for Dead Time: Timing analysis of bright black hole binaries with NuSTAR

    Get PDF
    Timing of high-count rate sources with the NuSTAR Small Explorer Mission requires specialized analysis techniques. NuSTAR was primarily designed for spectroscopic observations of sources with relatively low count-rates rather than for timing analysis of bright objects. The instrumental dead time per event is relatively long (~2.5 msec), and varies by a few percent event-to-event. The most obvious effect is a distortion of the white noise level in the power density spectrum (PDS) that cannot be modeled easily with the standard techniques due to the variable nature of the dead time. In this paper, we show that it is possible to exploit the presence of two completely independent focal planes and use the cross power density spectrum to obtain a good proxy of the white noise-subtracted PDS. Thereafter, one can use a Monte Carlo approach to estimate the remaining effects of dead time, namely a frequency-dependent modulation of the variance and a frequency-independent drop of the sensitivity to variability. In this way, most of the standard timing analysis can be performed, albeit with a sacrifice in signal to noise relative to what would be achieved using more standard techniques. We apply this technique to NuSTAR observations of the black hole binaries GX 339-4, Cyg X-1 and GRS 1915+105.Comment: 13 pages, 8 figures, submitted to Ap

    Serendipity and the SDSS: Discovery of the Largest Known Planetary Nebula on the Sky

    Full text link
    Investigation of spectra from the Sloan Digital Sky Survey reveals the presence of a region of ionized gas of >2 degrees diameter centered approximately at alpha = 10^h 37^m delta = -00^o 18' (J2000) (Galactic coordinates l=248, b=+48). [OIII] 4959,5007 emission is particularly strong and emission from H-alpha and [NII] 6548,6583 is also detectable over a substantial area on the sky. The combination of emission line ratios, the close to zero heliocentric radial velocity and the morphology of the structure are consistent with an identification as a very nearby planetary nebula. The proximity of the hot, DO white dwarf PG1034+001 further strengthens this interpretation. The object is: i) the largest planetary nebula on the sky, ii) certainly closer than any planetary nebula other than Sh 2--216, iii) the first to be unambiguously associated with a DO white dwarf. A parallax distance for PG1034+001 would establish whether the structure is in fact the closest, and one of the physically largest, planetary nebula known.Comment: 12 pages including 4 figures. ApJ Letters in pres

    The ultraluminous x-ray sources ngc 1313 x-1 and x-2: a broadband study with NuSTAR and XMM-Newton

    Get PDF
    We present the results of NuSTAR and XMM-Newton observations of the two ultraluminous X-ray sources (ULX) NGC 1313 X-1 and X-2. The combined spectral bandpass of the two satellites enables us to produce the first spectrum of X-1 between 0.3 and 30 keV, while X-2 is not significantly detected by NuSTAR above 10 keV. The NuSTAR data demonstrate that X-1 has a clear cutoff above 10 keV, whose presence was only marginally detectable with previous X-ray observations. This cutoff rules out the interpretation of X-1 as a black hole in a standard low/hard state, and it is deeper than predicted for the downturn of a broadened iron line in a reflection-dominated regime. The cutoff differs from the prediction of a single-temperature Comptonization model. Further, a cold disk-like black body component at ~0.3 keV is required by the data, confirming previous measurements by XMM-Newton only. We observe a spectral transition in X-2, from a state with high luminosity and strong variability to a lower-luminosity state with no detectable variability, and we link this behavior to a transition from a super-Eddington to a sub-Eddington regime.Comment: 12 pages, 7 figures. Accepted for publication in The Astrophysical Journal. Last edit: corrected some references, minor syntax edit
    corecore