Observations over the past 20 years have revealed a strong relationship
between the properties of the supermassive black hole (SMBH) lying at the
center of a galaxy and the host galaxy itself. The magnitude of the spin of the
black hole will play a key role in determining the nature of this relationship.
To date, direct estimates of black hole spin have been restricted to the local
Universe. Herein, we present the results of an analysis of ∼ 0.5 Ms of
archival Chandra observations of the gravitationally lensed quasar Q 2237+305
(aka the "Einstein-cross"), lying at a redshift of z = 1.695. The boost in flux
provided by the gravitational lens allows constraints to be placed on the spin
of a black hole at such high redshift for the first time. Utilizing state of
the art relativistic disk reflection models, the black hole is found to have a
spin of a∗=0.74−0.03+0.06 at the 90% confidence level. Placing a
lower limit on the spin, we find a∗≥0.65 (4σ). The high value of
the spin for the ∼109M⊙ black hole in Q 2237+305 lends
further support to the coherent accretion scenario for black hole growth. This
is the most distant black hole for which the spin has been directly constrained
to date.Comment: 5 pages, 3 figures, 1 table, formatted using emulateapj.cls. Accepted
for publication in ApJ