24 research outputs found
Expert consensus on an in vitro approach to assess pulmonary fibrogenic potential of aerosolized nanomaterials
The increasing use of multi-walled carbon nanotubes (MWCNTs) in consumer products and their potential to induce adverse lung effects following inhalation has lead to much interest in better understanding the hazard associated with these nanomaterials (NMs). While the current regulatory requirement for substances of concern, such as MWCNTs, in many jurisdictions is a 90-day rodent inhalation test, the monetary, ethical, and scientific concerns associated with this test led an international expert group to convene in Washington, DC, USA, to discuss alternative approaches to evaluate the inhalation toxicity of MWCNTs. Pulmonary fibrosis was identified as a key adverse outcome linked to MWCNT exposure, and recommendations were made on the design of an in vitro assay that is predictive of the fibrotic potential of MWCNTs. While fibrosis takes weeks or months to develop in vivo, an in vitro test system may more rapidly predict fibrogenic potential by monitoring pro-fibrotic mediators (e.g., cytokines and growth factors). Therefore, the workshop discussions focused on the necessary specifications related to the development and evaluation of such an in vitro system. Recommendations were made for designing a system using lung-relevant cells co-cultured at the air–liquid interface to assess the pro-fibrogenic potential of aerosolized MWCNTs, while considering human-relevant dosimetry and NM life cycle transformations. The workshop discussions provided the fundamental design components of an air–liquid interface in vitro test system that will be subsequently expanded to the development of an alternative testing strategy to predict pulmonary toxicity and to generate data that will enable effective risk assessment of NMs
Alternative approaches for acute inhalation toxicity testing to address global regulatory and non-regulatory data requirements: an international workshop report
Inhalation toxicity testing, which provides the basis for hazard labeling and risk management of chemicals with potential exposure to the respiratory tract, has traditionally been conducted using animals. Significant research efforts have been directed at the development of mechanistically based, non-animal testing approaches that hold promise to provide human-relevant data and an enhanced understanding of toxicity mechanisms. A September 2016 workshop, “Alternative Approaches for Acute Inhalation Toxicity Testing to Address Global Regulatory and Non-Regulatory Data Requirements”, explored current testing requirements and ongoing efforts to achieve global regulatory acceptance for non-animal testing approaches. The importance of using integrated approaches that combine existing data with in vitro and/or computational approaches to generate new data was discussed. Approaches were also proposed to develop a strategy for identifying and overcoming obstacles to replacing animal tests. Attendees noted the importance of dosimetry considerations and of understanding mechanisms of acute toxicity, which could be facilitated by the development of adverse outcome pathways. Recommendations were made to (1) develop a database of existing acute inhalation toxicity data; (2) prepare a state-of-the-science review of dosimetry determinants, mechanisms of toxicity, and existing approaches to assess acute inhalation toxicity; (3) identify and optimize in silico models; and (4) develop a decision tree/testing strategy, considering physicochemical properties and dosimetry, and conduct proof-of-concept testing. Working groups have been established to implement these recommendations
Pathway-based predictive approaches for non-animal assessment of acute inhalation toxicity
New approaches are needed to assess the effects of inhaled substances on human health. These approaches will be based on mechanisms of toxicity, an understanding of dosimetry, and the use of in silico modeling and in vitro test methods. In order to accelerate wider implementation of such approaches, development of adverse outcome pathways (AOPs) can help identify and address gaps in our understanding of relevant parameters for model input and mechanisms, and optimize non-animal approaches that can be used to investigate key events of toxicity. This paper describes the AOPs and the toolbox of in vitro and in silico models that can be used to assess the key events leading to toxicity following inhalation exposure. Because the optimal testing strategy will vary depending on the substance of interest, here we present a decision tree approach to identify an appropriate non-animal integrated testing strategy that incorporates consideration of a substance's physicochemical properties, relevant mechanisms of toxicity, and available in silico models and in vitro test methods. This decision tree can facilitate standardization of the testing approaches. Case study examples are presented to provide a basis for proof-of-concept testing to illustrate the utility of non-animal approaches to inform hazard identification and risk assessment of humans exposed to inhaled substances
Developing a framework for assessing respiratory sensitization: A workshop report
Respiratory tract sensitization can have significant acute and chronic health implications. While induction of respiratory sensitization is widely recognized for some chemicals, validated standard methods or frameworks for identifying and characterizing the hazard are not available. A workshop on assessment of respiratory sensitization was held to discuss the current state of science for identification and characterization of respiratory sensitizer hazard, identify information facilitating development of validated standard methods and frameworks, and consider the regulatory and practical risk management needs. Participants agreed on a predominant Th2 immunological mechanism and several steps in respiratory sensitization. Some overlapping cellular events in respiratory and skin sensitization are well understood, but full mechanism(s) remain unavailable. Progress on non-animal approaches to skin sensitization testing, ranging from in vitro systems, –omics, in silico profiling, and structural profiling were acknowledged. Addressing both induction and elicitation phases remains challenging. Participants identified lack of a unifying dose metric as increasing the difficulty of interpreting dosimetry across exposures. A number of research needs were identified, including an agreed list of respiratory sensitizers and other asthmagens, distinguishing between adverse effects from immune-mediated versus non immunological mechanisms. A number of themes emerged from the discussion regarding future testing strategies, particularly the need for a tiered framework respiratory sensitizer assessment. These workshop present a basis for moving towards a weight-of-evidence assessment