163 research outputs found

    Checkpoint inhibition reduces the threshold for Drug-Specific T-Cell priming and increases the incidence of sulfasalazine hypersensitivity

    Get PDF
    An emerging clinical issue associated with immune-oncology agents is the collateral effects on the tolerability of concomitant medications. One report of this phenomenon was the increased incidence of hypersensitivity reactions observed in patients receiving concurrent immune checkpoint inhibitors (ICIs) and sulfasalazine (SLZ). Thus, the aim of this study was to characterize the T cells involved in the pathogenesis of such reactions, and recapitulate the effects of inhibitory checkpoint blockade on de-novo priming responses to compounds within in vitro platforms. A regulatory competent human dendritic cell/T-cell coculture assay was used to model the effects of ICIs on de novo nitroso sulfamethoxazole- and sulfapyridine (SP) (the sulfonamide component of SLZ) hydroxylamine-specific priming responses. The role of T cells in the pathogenesis of the observed reactions was explored in 3 patients through phenotypic characterization of SP/sulfapyridine hydroxylamine (SPHA)-responsive T-cell clones (TCC), and assessment of cross-reactivity and pathways of T-cell activation. Augmentation of the frequency of responding drug-specific T cells and intensity of the T-cell response was observed with PD-1/PD-L1 blockade. Monoclonal populations of SP- and SPHA-responsive T cells were isolated from all 3 patients. A core secretory effector molecule profile (IFN-γ, IL-13, granzyme B, and perforin) was identified for SP and SPHA-responsive TCC, which proceeded through Pi and hapten mechanisms, respectively. Data presented herein provides evidence that drug-responsive T cells are effectors of hypersensitivity reactions observed in oncology patients administered ICIs and SLZ. Perturbation of drug-specific T-cell priming is a plausible explanation for clinical observations of how an increased incidence of these adverse events is occurring

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    Genomic and phenotypic characterization of 404 individuals with neurodevelopmental disorders caused by CTNNB1 variants

    Get PDF
    Purpose: Germline loss-of-function variants in CTNNB1 cause neurodevelopmental disorder with spastic diplegia and visual defects (NEDSDV; OMIM 615075) and are the most frequent, recurrent monogenic cause of cerebral palsy (CP). We investigated the range of clinical phenotypes owing to disruptions of CTNNB1 to determine the association between NEDSDV and CP. Methods: Genetic information from 404 individuals with collectively 392 pathogenic CTNNB1 variants were ascertained for the study. From these, detailed phenotypes for 52 previously unpublished individuals were collected and combined with 68 previously published individuals with comparable clinical information. The functional effects of selected CTNNB1 missense variants were assessed using TOPFlash assay. Results: The phenotypes associated with pathogenic CTNNB1 variants were similar. A diagnosis of CP was not significantly associated with any set of traits that defined a specific phenotypic subgroup, indicating that CP is not additional to NEDSDV. Two CTNNB1 missense variants were dominant negative regulators of WNT signaling, highlighting the utility of the TOPFlash assay to functionally assess variants. Conclusion: NEDSDV is a clinically homogeneous disorder irrespective of initial clinical diagnoses, including CP, or entry points for genetic testing.Sayaka Kayumi, Luis A. Perez-Jurado, María Palomares, Sneha Rangu, Sarah E. Sheppard, Wendy K. Chung, Michael C. Kruer, Mira Kharbanda, David J. Amor, George McGillivray, Julie S. Cohen, Sixto García-Minaúr, Clare L. van Eyk, Kelly Harper, Lachlan A. Jolly, Dani L. Webber, Christopher P. Barnett, Fernando Santos-Simarro, Marta Pacio-Míguez, Angela del Pozo, Somayeh Bakhtiari, Matthew Deardorff, Holly A. Dubbs, Kosuke Izumi, Katheryn Grand, Christopher Gray, Paul R. Mark, Elizabeth J. Bhoj, Dong Li, Xilma R. Ortiz-Gonzalez, Beth Keena, Elaine H. Zackai, Ethan M. Goldberg, Guiomar Perez de Nanclares, Arrate Pereda, Isabel Llano-Rivas, Ignacio Arroyo, María Angeles Fernandez-Cuesta, Christel Thauvin-Robinet, Laurence Faivre, Aurore Garde, Benoit Mazel, Ange-Line Bruel, Michael L. Tress, Eva Brilstra, Amena Smith Fine, Kylie E. Crompton, Alexander P.A. Stegmann, Margje Sinnema, Servi C.J. Stevens, Joost Nicolai, Gaetan Lesca, Laurence Lion-Francois, Damien Haye, Nicolas Chatron, Amelie Piton, Mathilde Nizon, Benjamin Cogne, Siddharth Srivastava, Jennifer Bassetti, Candace Muss, Karen W. Gripp, Rebecca A. Procopio, Francisca Millan, Michelle M. Morrow, Melissa Assaf, Andres Moreno-De-Luca, Shelagh Joss, Mark J. Hamilton, Marta Bertoli, Nicola Foulds, Shane McKee, Alastair H. MacLennan, Jozef Gecz, Mark A. Corbet

    Measurement of the CP-Violating Asymmetry Amplitude sin2β\beta

    Get PDF
    We present results on time-dependent CP-violating asymmetries in neutral B decays to several CP eigenstates. The measurements use a data sample of about 88 million Y(4S) --> B Bbar decays collected between 1999 and 2002 with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We study events in which one neutral B meson is fully reconstructed in a final state containing a charmonium meson and the other B meson is determined to be either a B0 or B0bar from its decay products. The amplitude of the CP-violating asymmetry, which in the Standard Model is proportional to sin2beta, is derived from the decay-time distributions in such events. We measure sin2beta = 0.741 +/- 0.067 (stat) +/- 0.033 (syst) and |lambda| = 0.948 +/- 0.051 (stat) +/- 0.017 (syst). The magnitude of lambda is consistent with unity, in agreement with the Standard Model expectation of no direct CP violation in these modes

    Paratuberculose em ruminantes no Brasil

    Full text link

    Lentivírus de pequenos ruminantes (CAEV e Maedi-Visna): revisão e perspectivas

    Full text link

    The Physics of the B Factories

    Get PDF
    corecore