70 research outputs found

    Using structural bioinformatics to investigate the impact of non synonymous SNPs and disease mutations: scope and limitations

    Get PDF
    BACKGROUND: Linking structural effects of mutations to functional outcomes is a major issue in structural bioinformatics, and many tools and studies have shown that specific structural properties such as stability and residue burial can be used to distinguish neutral variations and disease associated mutations. RESULTS: We have investigated 39 structural properties on a set of SNPs and disease mutations from the Uniprot Knowledge Base that could be mapped on high quality crystal structures and show that none of these properties can be used as a sole classification criterion to separate the two data sets. Furthermore, we have reviewed the annotation process from mutation to result and identified the liabilities in each step. CONCLUSION: Although excellent annotation results of various research groups underline the great potential of using structural bioinformatics to investigate the mechanisms underlying disease, the interpretation of such annotations cannot always be extrapolated to proteome wide variation studies. Difficulties for large-scale studies can be found both on the technical level, i.e. the scarcity of data and the incompleteness of the structural tool suites, and on the conceptual level, i.e. the correct interpretation of the results in a cellular context.status: publishe

    Halvade: scalable sequence analysis with MapReduce

    Get PDF
    Motivation: Post-sequencing DNA analysis typically consists of read mapping followed by variant calling. Especially for whole genome sequencing, this computational step is very time-consuming, even when using multithreading on a multi-core machine. Results: We present Halvade, a framework that enables sequencing pipelines to be executed in parallel on a multi-node and/or multi-core compute infrastructure in a highly efficient manner. As an example, a DNA sequencing analysis pipeline for variant calling has been implemented according to the GATK Best Practices recommendations, supporting both whole genome and whole exome sequencing. Using a 15-node computer cluster with 360 CPU cores in total, Halvade processes the NA12878 dataset (human, 100 bp paired-end reads, 50x coverage) in <3 h with very high parallel efficiency. Even on a single, multi-core machine, Halvade attains a significant speedup compared with running the individual tools with multithreading. Availability and implementation: Halvade is written in Java and uses the Hadoop MapReduce 2.0 API. It supports a wide range of distributions of Hadoop, including Cloudera and Amazon EMR

    QQ-SNV: single nucleotide variant detection at low frequency by comparing the quality quantiles

    Get PDF
    Background: Next generation sequencing enables studying heterogeneous populations of viral infections. When the sequencing is done at high coverage depth ("deep sequencing"), low frequency variants can be detected. Here we present QQ-SNV (http://sourceforge.net/projects/qqsnv), a logistic regression classifier model developed for the Illumina sequencing platforms that uses the quantiles of the quality scores, to distinguish true single nucleotide variants from sequencing errors based on the estimated SNV probability. To train the model, we created a dataset of an in silico mixture of five HIV-1 plasmids. Testing of our method in comparison to the existing methods LoFreq, ShoRAH, and V-Phaser 2 was performed on two HIV and four HCV plasmid mixture datasets and one influenza H1N1 clinical dataset. Results: For default application of QQ-SNV, variants were called using a SNV probability cutoff of 0.5 (QQ-SNVD). To improve the sensitivity we used a SNV probability cutoff of 0.0001 (QQ-SNVHS). To also increase specificity, SNVs called were overruled when their frequency was below the 80th percentile calculated on the distribution of error frequencies (QQ-SNVHS-P80). When comparing QQ-SNV versus the other methods on the plasmid mixture test sets, QQ-SNVD performed similarly to the existing approaches. QQ-SNVHS was more sensitive on all test sets but with more false positives. QQ-SNVHS-P80 was found to be the most accurate method over all test sets by balancing sensitivity and specificity. When applied to a paired-end HCV sequencing study, with lowest spiked-in true frequency of 0.5 %, QQ-SNVHS-P80 revealed a sensitivity of 100 % (vs. 40-60 % for the existing methods) and a specificity of 100 % (vs. 98.0-99.7 % for the existing methods). In addition, QQ-SNV required the least overall computation time to process the test sets. Finally, when testing on a clinical sample, four putative true variants with frequency below 0.5 % were consistently detected by QQ-SNVHS-P80 from different generations of Illumina sequencers. Conclusions: We developed and successfully evaluated a novel method, called QQ-SNV, for highly efficient single nucleotide variant calling on Illumina deep sequencing virology data

    SNPeffect: a database mapping molecular phenotypic effects of human non-synonymous coding SNPs

    Get PDF
    Single nucleotide polymorphisms (SNPs) are an increasingly important tool for genetic and biomedical research. However, the accumulated sequence information on allelic variation is not matched by an understanding of the effect of SNPs on the functional attributes or ā€˜molecular phenotypeā€™ of a protein. Towards this aim we developed SNPeffect, an online resource of human non-synonymous coding SNPs (nsSNPs) mapping phenotypic effects of allelic variation in human genes. SNPeffect contains 31ā€‰659 nsSNPs from 12ā€‰480 human proteins. The current release of SNPeffect incorporates data on protein stability, integrity of functional sites, protein phosphorylation and glycosylation, subcellular localization, protein turnover rates, protein aggregation, amyloidosis and chaperone interaction. The SNP entries are accessible through both a search and browse interface and are linked to most major biological databases. The data can be displayed as detailed descriptions of individual SNPs or as an overview of all SNPs for a given protein. SNPeffect will be regularly updated and can be accessed at http://snpeffect.vib.be/

    A random effects model for the identification of differential splicing (REIDS) using exon and HTA arrays

    Get PDF
    Background: Alternative gene splicing is a common phenomenon in which a single gene gives rise to multiple transcript isoforms. The process is strictly guided and involves a multitude of proteins and regulatory complexes. Unfortunately, aberrant splicing events do occur which have been linked to genetic disorders, such as several types of cancer and neurodegenerative diseases (Fan et al., Theor Biol Med Model 3:19, 2006). Therefore, understanding the mechanism of alternative splicing and identifying the difference in splicing events between diseased and healthy tissue is crucial in biomedical research with the potential of applications in personalized medicine as well as in drug development. Results: We propose a linear mixed model, Random Effects for the Identification of Differential Splicing (REIDS), for the identification of alternative splicing events. Based on a set of scores, an exon score and an array score, a decision regarding alternative splicing can be made. The model enables the ability to distinguish a differential expressed gene from a differential spliced exon. The proposed model was applied to three case studies concerning both exon and HTA arrays. Conclusion: The REIDS model provides a work flow for the identification of alternative splicing events relying on the established linear mixed model. The model can be applied to different types of arrays

    Joint annotation of coding and non-coding single nucleotide polymorphisms and mutations in the SNPeffect and PupaSuite databases

    Get PDF
    Single nucleotide polymorphisms (SNPs) are, together with copy number variation, the primary source of variation in the human genome. SNPs are associated with altered response to drug treatment, susceptibility to disease and other phenotypic variation. Furthermore, during genetic screens for disease-associated mutations in groups of patients and control individuals, the distinction between disease causing mutation and polymorphism is often unclear. Annotation of the functional and structural implications of single nucleotide changes thus provides valuable information to interpret and guide experiments. The SNPeffect and PupaSuite databases are now synchronized to deliver annotations for both non-coding and coding SNP, as well as annotations for the SwissProt set of human disease mutations. In addition, SNPeffect now contains predictions of Tango2: an improved aggregation detector, and Waltz: a novel predictor of amyloid-forming sequences, as well as improved predictors for regions that are recognized by the Hsp70 family of chaperones. The new PupaSuite version incorporates predictions for SNPs in silencers and miRNAs including their targets, as well as additional methods for predicting SNPs in TFBSs and splice sites. Also predictions for mouse and rat genomes have been added. In addition, a PupaSuite web service has been developed to enable data access, programmatically. The combined database holds annotations for 4 965 073 regulatory as well as 133 505 coding human SNPs and 14 935 disease mutations, and phenotypic descriptions of 43 797 human proteins and is accessible via http://snpeffect.vib.be and http://pupasuite.bioinfo.cipf.es/

    PupaSuite: finding functional single nucleotide polymorphisms for large-scale genotyping purposes

    Get PDF
    We have developed a web tool, PupaSuite, for the selection of single nucleotide polymorphisms (SNPs) with potential phenotypic effect, specifically oriented to help in the design of large-scale genotyping projects. PupaSuite uses a collection of data on SNPs from heterogeneous sources and a large number of pre-calculated predictions to offer a flexible and intuitive interface for selecting an optimal set of SNPs. It improves the functionality of PupaSNP and PupasView programs and implements new facilities such as the analysis of user's data to derive haplotypes with functional information. A new estimator of putative effect of polymorphisms has been included that uses evolutionary information. Also SNPeffect database predictions have been included. The PupaSuite web interface is accessible through and through

    ViVaMBC: estimating viral sequence variation in complex populations from illumina deep-sequencing data using model-based clustering

    Get PDF
    Background: Deep-sequencing allows for an in-depth characterization of sequence variation in complex populations. However, technology associated errors may impede a powerful assessment of low-frequency mutations. Fortunately, base calls are complemented with quality scores which are derived from a quadruplet of intensities, one channel for each nucleotide type for Illumina sequencing. The highest intensity of the four channels determines the base that is called. Mismatch bases can often be corrected by the second best base, i.e. the base with the second highest intensity in the quadruplet. A virus variant model-based clustering method, ViVaMBC, is presented that explores quality scores and second best base calls for identifying and quantifying viral variants. ViVaMBC is optimized to call variants at the codon level (nucleotide triplets) which enables immediate biological interpretation of the variants with respect to their antiviral drug responses. Results: Using mixtures of HCV plasmids we show that our method accurately estimates frequencies down to 0.5%. The estimates are unbiased when average coverages of 25,000 are reached. A comparison with the SNP-callers V-Phaser2, ShoRAH, and LoFreq shows that ViVaMBC has a superb sensitivity and specificity for variants with frequencies above 0.4%. Unlike the competitors, ViVaMBC reports a higher number of false-positive findings with frequencies below 0.4% which might partially originate from picking up artificial variants introduced by errors in the sample and library preparation step. Conclusions: ViVaMBC is the first method to call viral variants directly at the codon level. The strength of the approach lies in modeling the error probabilities based on the quality scores. Although the use of second best base calls appeared very promising in our data exploration phase, their utility was limited. They provided a slight increase in sensitivity, which however does not warrant the additional computational cost of running the offline base caller. Apparently a lot of information is already contained in the quality scores enabling the model based clustering procedure to adjust the majority of the sequencing errors. Overall the sensitivity of ViVaMBC is such that technical constraints like PCR errors start to form the bottleneck for low frequency variant detection

    Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations

    Get PDF
    The HEK293 human cell lineage is widely used in cell biology and biotechnology. Here we use whole-genome resequencing of six 293 cell lines to study the dynamics of this aneuploid genome in response to the manipulations used to generate common 293 cell derivatives, such as transformation and stable clone generation (293T); suspension growth adaptation (293S); and cytotoxic lectin selection (293SG). Remarkably, we observe that copy number alteration detection could identify the genomic region that enabled cell survival under selective conditions (i.c. ricin selection). Furthermore, we present methods to detect human/vector genome breakpoints and a user-friendly visualization tool for the 293 genome data. We also establish that the genome structure composition is in steady state for most of these cell lines when standard cell culturing conditions are used. This resource enables novel and more informed studies with 293 cells, and we will distribute the sequenced cell lines to this effect

    Whole-genome sequencing reveals a coding non-pathogenic variant tagging a non-coding pathogenic hexanucleotide repeat expansion in C9orf72 as cause of amyotrophic lateral sclerosis

    Get PDF
    Motor neuron degeneration in amyotrophic lateral sclerosis (ALS) has a familial cause in 10% of patients. Despite significant advances in the genetics of the disease, many families remain unexplained. We performed whole-genome sequencing in five family members from a pedigree with autosomal-dominant classical ALS. A family-based elimination approach was used to identify novel coding variants segregating with the disease. This list of variants was effectively shortened by genotyping these variants in 2 additional unaffected family members and 1500 unrelated population-specific controls. A novel rare coding variant in SPAG8 on chromosome 9p13.3 segregated with the disease and was not observed in controls. Mutations in SPAG8 were not encountered in 34 other unexplained ALS pedigrees, including 1 with linkage to chromosome 9p13.2ā€“23.3. The shared haplotype containing the SPAG8 variant in this small pedigree was 22.7 Mb and overlapped with the core 9p21 linkage locus for ALS and frontotemporal dementia. Based on differences in coverage depth of known variable tandem repeat regions between affected and non-affected family members, the shared haplotype was found to contain an expanded hexanucleotide (GGGGCC)n repeat in C9orf72 in the affected members. Our results demonstrate that rare coding variants identified by whole-genome sequencing can tag a shared haplotype containing a non-coding pathogenic mutation and that changes in coverage depth can be used to reveal tandem repeat expansions. It also confirms (GGGGCC)n repeat expansions in C9orf72 as a cause of familial ALS
    • ā€¦
    corecore