546 research outputs found

    Cyanobacteria blooms cannot be controlled by effective microorganisms (EM) from mud- or Bokashi-balls

    Get PDF
    In controlled experiments, the ability of ‘‘Effective Microorganisms (EM, in the form of mudballs or Bokashi-balls)’’ was tested for clearing waters from cyanobacteria. We found suspensions of EM-mudballs up to 1 g l-1 to be ineffective in reducing cyanobacterial growth. In all controls and EM-mudball treatments up to 1 g l-1 the cyanobacterial chlorophyll-a (Chl-a) concentrations increased within 4 weeks from&120 to 325–435 lg l-1. When pieces of EM-mudballs (42.5 g) were added to 25-l lake water with cyanobacteria, no decrease of cyanobacteria as compared to untreated controls was observed. In contrast, after 4 weeks cyanobacterial Chl-a concentrations were significantly higher in EM-mudball treatments (52 lg l-1) than in controls (20 lg l-1). Only when suspensions with extremely high EM-mudball concentrations were applied (i.e., 5 and 10 g l-1), exceeding the recommended concentrations by orders of magnitude, cyanobacterial growth was inhibited and a bloom forming concentration was reduced strongly. In these high dosing treatments, the oxygen concentration dropped initially to very low levels of 1.8 g l-1. This was most probably through forcing strong light limitation on the cyanobacteria caused by the high amount of clay and subsequent high turbidity of the water. Hence, this study yields no support for the hypothesis that EM is effective in preventing cyanobacterial proliferation or in terminating blooms. We consider EM products to be ineffective because they neither permanently bind nor remove phosphorus from eutroficated systems, they have no inhibiting effect on cyanobacteria, and they could even be an extra source of nutrients

    Managed delay for coronary artery bypass graft surgery: The experience at one Canadian center

    Get PDF
    AbstractObjectives. This study sought to assess the impact of delaying coronary artery bypass surgery at one Canadian academic tertiary referral center.Background. Universal access to medical services in Canada comes at the expense of waiting lists whose impact has been incompletely assessed.Methods. A prospective, observational study of all residents of Nova Scotia and Prince Edward Island accepted for bypass surgery between 1 April 1992 and 31 October 1992 was undertaken to determine 1) whether triage guidelines were being followed; and 2) the incidence of cardiac death, nonfatal myocardial infarction and worsening symptoms associated with delayed operation. The analysis had 90% power to detect a mortality rate of ≥3% (alpha 0.05).Results. Of 423 patients referred, 35% were triaged as urgent, 9.7% as semiurgent A, 39% as semiurgent B and 16.3% as elective, with no age or gender bias identified. Operation occurred at ≤1 week in 25%, ≤1 month in 47%, and >6 months in 1.4%. There were no nonfatal myocardial infarctions, but five cardiac deaths occurred (1.2%). Of 275 patients not initially classified as urgent, 12.4% required reclassification to higher priorities because of worsening symptoms: none had perioperative myocardial infarction or died. One in four patients queued longer than target waiting times. Only 4% of patients considered prioritization on the basis of medical need unfair, but 64% experienced at least moderate anxiety.Conclusions. This triage system equitably stratified patients to a queue. Deaths were rare and could not be attributed to the triage process. Patients with worsening clinical status were safely accommodated with earlier waiting times, but concerns remain regarding excessive waiting times and patient anxiety

    Oxygen Absorption in M87: Evidence for a Warm+Hot ISM

    Get PDF
    We present a re-analysis of the ROSAT PSPC data within the central 100 kpc of M87 to search for intrinsic oxygen absorption similar to that recently measured in several galaxies and groups. Using a spatial-spectral deprojection analysis we find the strongest evidence to date for intrinsic oxygen absorption in the hot gas of a galaxy, group, or cluster. Single-phase plasma models modified by intervening Galactic absorption cannot fit the 0.2-2.2 keV PSPC data as they under-predict the 0.2-0.4 keV region and over-predict the 0.5-0.8 keV region where the emission and absorption residuals are obvious upon visual inspection of the spectral fits. Since the excess emission between 0.2-0.4 keV rules out intrinsic absorption from cold gas or dust, the most reasonable model for the excess emission and absorption features is warm, collisionally ionized gas with a temperature of ~10^6 K. Simple multiphase models (cooling flow, two phases) modified by both intervening Galactic absorption and by a single oxygen edge provide good fits and yield temperatures and Fe abundances of the hot gas that agree with previous determinations by ASCA and SAX. The multiphase models of M87 inferred from the PSPC can account for the excess EUV emission observed with EUVE and the excess X-ray absorption inferred from EINSTEIN and ASCA data above 0.5 keV. Although the total mass of the warm gas implied by the oxygen absorption is consistent with the matter deposited by a cooling flow, the suppression of the mass deposition rate and the distortion of the X-ray isophotes in the region where the radio emission is most pronounced suggest some feedback effect from the AGN on the cooling gas. (Abridged)Comment: 17 pages (13 figures), Accepted for Publication in The Astrophysical Journa

    Temperature and Heavy Element Abundance Profiles of Cool Clusters of Galaxies from ASCA

    Get PDF
    We perform a spatially resolved X-ray spectroscopic study of a set of 18 relaxed clusters of galaxies with gas temperatures below 4 keV. Spectral analysis was done using ASCA/SIS data coupled with the spatial information contained in ROSAT/PSPC and Einstein/IPC observations. We derive the temperature profiles using single-temperature fits and also correct for the presence of cold gas at the cluster centers. For all of the clusters in the sample, we derive Si and Fe abundance profiles. For a few of the clusters, we also derive Ne and S abundance profiles. We present a comparison of the elemental abundances derived at similar overdensities as well as element mass-to-light ratios. We conclude that the preferential accretion of low entropy, low abundance gas into the potentials of groups and cold clusters can explain most of the observed trends in metallicity. In addition, we discuss the importance of energy input from SNe II on cluster scaling relations and on the relation between the observed scatter in the retainment of SN Ia products with differences between the epoch of cluster formation.Comment: 14 pages, several changes are introduced, ApJ 2001, v 555 (July 1, in press

    Grey matter changes can improve the prediction of schizophrenia in subjects at high risk

    Get PDF
    BACKGROUND: We hypothesised that subjects at familial high risk of developing schizophrenia would have a reduction over time in grey matter, particularly in the temporal lobes, and that this reduction may predict schizophrenia better than clinical measurements. METHODS: We analysed magnetic resonance images of 65 high-risk subjects from the Edinburgh High Risk Study sample who had two scans a mean of 1.52 years apart. Eight of these 65 subjects went on to develop schizophrenia an average of 2.3 years after their first scan. RESULTS: Changes over time in the inferior temporal gyrus gave a 60% positive predictive value (likelihood ratio >10) of developing schizophrenia compared to the overall 13% risk in the cohort as a whole. CONCLUSION: Changes in grey matter could be used as part of a predictive test for schizophrenia in people at enhanced risk for familial reasons, particularly for positive predictive power, in combination with other clinical and cognitive predictive measures, several of which are strong negative predictors. However, because of the limited number of subjects, this test requires independent replication to confirm its validity

    The COMPLETE Survey of Star-Forming Regions: Phase I Data

    Get PDF
    We present an overview of data available for the Ophiuchus and Perseus molecular clouds from ``Phase I'' of the COMPLETE Survey of Star-Forming Regions. This survey provides a range of data complementary to the Spitzer Legacy Program ``From Molecular Cores to Planet Forming Disks.'' Phase I includes: Extinction maps derived from 2MASS near-infrared data using the NICER algorithm; extinction and temperature maps derived from IRAS 60 and 100um emission; HI maps of atomic gas; 12CO and 13CO maps of molecular gas; and submillimetre continuum images of emission from dust in dense cores. Not unexpectedly, the morphology of the regions appears quite different depending on the column-density tracer which is used, with IRAS tracing mainly warmer dust and CO being biased by chemical, excitation and optical depth effects. Histograms of column-density distribution are presented, showing that extinction as derived from 2MASS/NICER gives the closest match to a log-normal distribution as is predicted by numerical simulations. All the data presented in this paper, and links to more detailed publications on their implications are publically available at the COMPLETE website.Comment: Accepted by AJ. Full resolution version available from: http://www.cfa.harvard.edu/COMPLETE/papers/complete_phase1.pd

    ROSAT Evidence for Intrinsic Oxygen Absorption in Cooling Flow Galaxies and Groups

    Full text link
    Using spatially resolved, deprojected ROSAT PSPC spectra of 10 of the brightest cooling flow galaxies and groups with low Galactic column densities we have detected intrinsic absorption over energies ~0.4-0.8 keV in half of the sample. Since no intrinsic absorption is indicated for energies below ~0.4 keV, the most reasonable model for the absorber is collisionally ionized gas at temperatures T=10^{5-6} K with most of the absorption arising from ionized states of oxygen but with a significant contribution from carbon and nitrogen. The soft X-ray emission of this warm gas can explain the sub-Galactic column densities of cold gas inferred within the central regions of most of the systems. Attributing the absorption to ionized gas reconciles the large columns of cold H and He inferred from EINSTEIN and ASCA with the lack of such columns inferred from ROSAT. Within the central ~10-20 kpc, where the constraints are most secure, the estimated mass of the ionized absorber is consistent with most (perhaps all) of the matter deposited by a cooling flow over the lifetime of the flow. Since the warm absorber produces no significant H or He absorption the large absorber masses are consistent with the negligible atomic and molecular H inferred from HI and CO observations of cooling flows. It is also found that if T > ~2x10^5 K then the optical and UV emission implied by the warm gas does not violate published constraints. Finally, we discuss how the prediction of warm ionized gas as the product of mass drop-out in these and other cooling flows can be verified with new CHANDRA and XMM observations. (Abridged)Comment: 17 pages (5 figures), Accepted for publication in ApJ, expanded discussion of multiphase spectral models, theoretical implications of warm gas in cooling flows, and the statistical significance of the oxygen absorptio

    Very Large Array Observations of Ammonia in Infrared-Dark Clouds II: Internal Kinematics

    Get PDF
    Infrared-dark clouds (IRDCs) are believed to be the birthplaces of rich clusters and thus contain the earliest phases of high-mass star formation. We use the Green Bank Telescope (GBT) and Very Large Array (VLA) maps of ammonia (NH3) in six IRDCs to measure their column density and temperature structure (Paper 1), and here, we investigate the kinematic structure and energy content. We find that IRDCs overall display organized velocity fields, with only localized disruptions due to embedded star formation. The local effects seen in NH3 emission are not high velocity outflows but rather moderate (few km/s) increases in the line width that exhibit maxima near or coincident with the mid-infrared emission tracing protostars. These line width enhancements could be the result of infall or (hidden in NH3 emission) outflow. Not only is the kinetic energy content insufficient to support the IRDCs against collapse, but also the spatial energy distribution is inconsistent with a scenario of turbulent cloud support. We conclude that the velocity signatures of the IRDCs in our sample are due to active collapse and fragmentation, in some cases augmented by local feedback from stars.Comment: 15 pages, 12 figures, accepted for publication in Ap

    XMM-Newton observation of the relaxed cluster A478: gas and dark matter distribution from 0.01 R_200 to 0.5 R_200

    Full text link
    We present an \xmm mosaic observation of the hot (kT∼6.5kT\sim6.5 keV) and nearby (z=0.0881z=0.0881) relaxed cluster of galaxies A478. We derive precise gas density, gas temperature, gas mass and total mass profiles up to 12\arcmin (about half of the virial radius R200R_{200}). The gas density profile is highly peaked towards the center and the surface brightness profile is well fitted by a sum of three β\beta--models. The derived gas density profile is in excellent agreement, both in shape and in normalization, with the published Chandra density profile (measured within 5\arcmin of the center). Projection and PSF effects on the temperature profile determination are thoroughly investigated. The derived radial temperature structure is as expected for a cluster hosting a cooling core, with a strong negative gradient at the cluster center. The temperature rises from ∼2\sim2 keV up to a plateau of ∼6.5\sim6.5 keV beyond 2' (i.e. r>208kpc=0.1R200r>208\rm{kpc}=0.1 R_{200}, R200=2.08R_{200}=2.08 Mpc being the virial radius). From the temperature profile and the density profile and under the hypothesis of hydrostatic equilibrium, we derived the total mass profile of A478 down to 0.01 and up to 0.5 the virial radius. We tested different dark matter models against the observed mass profile. The Navarro, Frenk & White (\cite{navarro97}) model is significantly preferred to other models. It leads to a total mass of M200=1.1×1015M_{200}=1.1\times 10^{15} M⊙_\odot for a concentration parameter of c=4.2±0.4c=4.2\pm0.4. The gas mass fraction slightly increases with radius. The gas mass fraction at a density contrast of δ=2500\delta=2500 is \fgas=0.13\pm0.02, consistent with previous results on similar hot and massive clusters. We confirm the excess of absorption in the direction of A478.[abridged]Comment: 15 pages, 11 figures, accepted for publication in A&A, corrected typo
    • …
    corecore