974 research outputs found

    A survey of factors influencing career preference in new-entrant and exiting medical students from four UK medical schools

    Get PDF
    Our thanks to Professor Gillian Needham and Dr Murray Lough for their encouragement and support, and their comments on an earlier draft of this manuscript. Our thanks also to NHS Education for Scotland [NES] for funding, and the Scottish Medical Deans Education Group [SMDEG] for supporting this project. We are grateful to all the students who gave their time to complete the survey questionnaire and to those who helped organise and carry out data collection.Peer reviewedPublisher PD

    Unintentional eating : what determines goal-incongruent chocolate consumption?

    Get PDF
    Copyright 2010 Elsevier Ltd. All rights reserved.Peer reviewedPostprintPostprin

    Visual crowding is unaffected by adaptation-induced spatial compression

    Get PDF
    It has recently been shown that adapting to a densely textured stimulus alters the perception of visual space, such that the distance between two points subsequently presented in the adapted region appears reduced (Hisakata, Nishida, & Johnston, 2016). We asked whether this form of adaptation-induced spatial compression alters visual crowding. To address this question, we first adapted observers to a dynamic dot texture presented within an annular region surrounding the test location. Following adaptation, observers perceived a test array comprised of multiple oriented dot dipoles as spatially compressed, resulting in an overall reduction in perceived size. We then tested to what extent this spatial compression influences crowding by measuring orientation discrimination of a single dipole flanked by randomly oriented dipoles across a range of separations. Following adaptation, we found that the magnitude of crowding was predicted by the physical-rather than perceptual-separation between centre and flanking dipoles. These findings contrast with previous studies in which crowding has been shown to increase when motion-induced position shifts act to reduce apparent separation (Dakin, Greenwood, Carlson, & Bex, 2011; Maus, Fischer, & Whitney, 2011)

    Phasing of muscle gene expression with fasting-induced recovery growth in Atlantic salmon

    Get PDF
    Background: Many fish species experience long periods of fasting in nature often associated with seasonal reductions in water temperature and prey availability or spawning migrations. During periods of nutrient restriction, changes in metabolism occur to provide cellular energy via catabolic processes. Muscle is particularly affected by prolonged fasting as myofibrillar proteins act as a major energy source. To investigate the mechanisms of metabolic reorganisation with fasting and refeeding in a saltwater stage of Atlantic salmon (Salmo salar L.) we analysed the expression of genes involved in myogenesis, growth signalling, lipid biosynthesis and myofibrillar protein degradation and synthesis pathways using qPCR. Results: Hierarchical clustering of gene expression data revealed three clusters. The first cluster comprised genes involved in lipid metabolism and triacylglycerol synthesis (ALDOB, DGAT1 and LPL) which had peak expression 3-14d after refeeding. The second cluster comprised ADIPOQ, MLC2, IGF-I and TALDO1, with peak expression 14-32d after refeeding. Cluster III contained genes strongly down regulated as an initial response to feeding and included the ubiquitin ligases MuRF1 and MAFbx, myogenic regulatory factors and some metabolic genes. Conclusion: Early responses to refeeding in fasted salmon included the synthesis of triacylglycerols and activation of the adipogenic differentiation program. Inhibition of MuRF1 and MAFbx respectively may result in decreased degradation and concomitant increased production of myofibrillar proteins. Both of these processes preceded any increase in expression of myogenic regulatory factors and IGF-I. These responses could be a necessary strategy for an animal adapted to long periods of food deprivation whereby energy reserves are replenished prior to the resumption of myogenesis.Publisher PDFPeer reviewe

    Visual perception in dyslexia is limited by sub-optimal scale selection

    Get PDF
    Readers with dyslexia are purported to have a selective visual impairment but the underlying nature of the deficit remains elusive. Here, we used a combination of behavioural psychophysics and biologically-motivated computational modeling to investigate if this deficit extends to object segmentation, a process implicated in visual word form recognition. Thirty-eight adults with a wide range of reading abilities were shown random-dot displays spatially divided into horizontal segments. Adjacent segments contained either local motion signals in opposing directions or analogous static form cues depicting orthogonal orientations. Participants had to discriminate these segmented patterns from stimuli containing identical motion or form cues that were spatially intermingled. Results showed participants were unable to perform the motion or form task reliably when segment size was smaller than a spatial resolution (acuity) limit that was independent of reading skill. Coherence thresholds decreased as segment size increased, but for the motion task the rate of improvement was shallower for readers with dyslexia and the segment size where performance became asymptotic was larger. This suggests that segmentation is impaired in readers with dyslexia but only on tasks containing motion information. We interpret these findings within a novel framework in which the mechanisms underlying scale selection are impaired in developmental dyslexia

    Encoding of rapid time-varying information is impaired in poor readers

    Get PDF
    A characteristic set of eye movements and fixations are made during reading, so the position of words on the retinae is constantly being updated. Effective decoding of print requires this temporal stream of visual information to be segmented or parsed into its constituent units (e.g., letters or words). Poor readers' difficulties with word recognition could arise at the point of segmenting time-varying visual information, but the mechanisms underlying this process are little understood. Here, we used random-dot displays to explore the effects of reading ability on temporal segmentation. Thirty-eight adult readers viewed test stimuli that were temporally segmented by constraining either local motions or analogous form cues to oscillate back and fourth at each of a range of rates. Participants had to discriminate these segmented patterns from comparison stimuli containing the same motion and form cues but these were temporally intermingled. Results showed that the motion and form tasks could not be performed reliably when segment duration was shorter than a temporal resolution (acuity) limit. The acuity limits for both tasks were significantly and negatively correlated with reading scores. Importantly, the minimum segment duration needed to detect the temporally segmented stimuli was longer in relatively poor readers than relatively good readers. This demonstrates that adult poor readers have difficulty segmenting temporally changing visual input particularly at short segment durations. These results are consistent with evidence suggesting that precise encoding of rapid time-varying information is impaired in developmental dyslexia
    corecore