57,388 research outputs found

    The Search for AGN in Distant Galaxy Clusters

    Full text link
    We are undertaking the first systematic study of the prevalence of AGN activity in a large sample of high redshift galaxy clusters. Local clusters contain mainly red elliptical galaxies, and have little or no luminous AGN activity. However, recent studies of some moderate to high redshift clusters have revealed significant numbers of luminous AGN within the cluster. This effect may parallel the Butcher-Oemler effect - the increase in the fraction of blue galaxies in distant clusters compared to local clusters. Our aim is to verify and quantify recent evidence that AGN activity in dense environments increases with redshift, and to evaluate the significance of this effect. As cluster AGN are far less prevalent than field sources, a large sample of over 120 cluster fields at z > 0.1 has been selected from the Chandra archives and is being analysed for excess point sources. The size of the excess, the radial distribution and flux of the sources and the dependence of these on cluster redshift and luminosity will reveal important information about the triggering and fueling of AGN.Comment: 2 pages, to appear in proceedings of 'Multi-wavelength AGN surveys', Cozumel, 200

    Broadband power amplifier tube: Klystron tube 5K70SK-WBT and step tuner VA-1470S

    Get PDF
    The design concept, the fabrication, and the acceptance testing of a wide band Klystron tube and remotely controlled step tuner for channel selection are discussed. The equipment was developed for the modification of an existing 20 KW Power Amplifier System which was provided to the contractor as GFE. The replacement Klystron covers a total frequency range of 2025 to 2120 MHz and is tuneable to six (6) each channel with a band width of 22 MHz or greater per channel. A 5 MHz overlap is provided between channels. Channels are selected at the control panel located in the front of the Klystron magnet or from one of three remote control stations connected in parallel with the step tuner. Included in this final report are the results of acceptance tests conducted at the vendor's plant and of the integrated system tests

    Fracture toughness and fatigue-crack propagation in a Zr–Ti–Ni–Cu–Be bulk metallic glass

    Get PDF
    The recent development of metallic alloy systems which can be processed with an amorphous structure over large dimensions, specifically to form metallic glasses at low cooling rates (similar to 10 K/s), has permitted novel measurements of important mechanical properties. These include, for example, fatigue-crack growth and fracture toughness behavior, representing the conditions governing the subcritical and critical propagation of cracks in these structures. In the present study, bulk plates of a Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy, machined into 7 mm wide, 38 mm thick compact-tension specimens and fatigue precracked following standard procedures, revealed fracture toughnesses in the fully amorphous structure of K(lc)similar to 55 MPa root m, i.e., comparable with that of a high-strength steel or aluminum ahoy. However, partial and full crystallization, e.g., following thermal exposure at 633 K or more, was found to result in a drastic reduction in fracture toughness to similar to 1 MPa root m, i.e., comparable with silica glass. The fully amorphous alloy was also found to be susceptible to fatigue-crack growth under cyclic loading, with growth-rate properties comparable to that of ductile crystalline metallic alloys, such as high-strength steels or aluminum alloys; no such fatigue was seen in the partially or fully crystallized alloys which behaved like very brittle ceramics. Possible micromechanical mechanisms for such behavior are discussed

    The applicability of frame imaging from a spinning spacecraft. Volume 1: Summary report

    Get PDF
    A detailed study was made of frame-type imaging systems for use on board a spin stabilized spacecraft for outer planets applications. All types of frame imagers capable of performing this mission were considered, regardless of the current state of the art. Detailed sensor models of these systems were developed at the component level and used in the subsequent analyses. An overall assessment was then made of the various systems based upon results of a worst-case performance analysis, foreseeable technology problems, and the relative reliability and radiation tolerance of the systems. Special attention was directed at restraints imposed by image motion and the limited data transmission and storage capability of the spacecraft. Based upon this overall assessment, the most promising systems were selected and then examined in detail for a specified Jupiter orbiter mission. The relative merits of each selected system were then analyzed, and the system design characteristics were demonstrated using preliminary configurations, block diagrams, and tables of estimated weights, volumes and power consumption

    A summary of the behavior of materials at cryogenic temperatures

    Get PDF
    Summary of material behavior at cryogenic temperature

    The relationship of storm severity to directionally resolved radio emissions

    Get PDF
    Directionally resolved atmospheric radio frequency emission data were acquired from thunderstorms occurring in the central and southwestern United States. In addition, RF sferic tracking data were obtained from hurricanes and tropical depressions occurring in the Gulf of Mexico. The data were acquired using a crossed baseline phase interferometer operating at a frequency of 2.001 MHz. The received atmospherics were tested for phase linearity across the array, and azimuth/elevation angles of arrival were computed in real time. A histogram analysis of sferic burst count versus azimuth provided lines of bearing to centers of intense electrical activity. Analysis indicates a consistent capability of the phase linear direction finder to detect severe meteorological activity to distances of 2000 km from the receiving site. The technique evidences the ability to discriminate severe storms from nonsevere storms coexistent in large regional scale thunderstorm activity

    Pressure-viscosity measurements for several lubricants to 5.5 x 10 to the 8th power Newtons per square meter (8 x 10 to the 4th psi) and 149 C (300 F)

    Get PDF
    A capillary viscometer was used to measure viscosity as a function of pressure, temperature, and shear stress for a number of lubricants. The conditions under which the measurements were made are specified. The results obtained for each material are analyzed. It was determined that all pressure-viscosity coefficients decreased with increasing temperature. Data from other techniques such as optical elastohydrodynamics, oscillating crystal, and low shear capillary viscometry were compared with the results obtained

    A proposal for highly tunable optical parametric oscillation in silicon micro-resonators

    Get PDF
    We propose a novel scheme for continuous-wave pumped optical parametric oscillation (OPO) inside silicon micro-resonators. The proposed scheme not only requires a relative low lasing threshold, but also exhibits extremely broad tunability extending from the telecom band to mid infrared

    Geometry of random interactions

    Get PDF
    It is argued that spectral features of quantal systems with random interactions can be given a geometric interpretation. This conjecture is investigated in the context of two simple models: a system of randomly interacting d bosons and one of randomly interacting fermions in a j=7/2 shell. In both examples the probability for a given state to become the ground state is shown to be related to a geometric property of a polygon or polyhedron which is entirely determined by particle number, shell size, and symmetry character of the states. Extensions to more general situations are discussed

    Detectability of the First Cosmic Explosions

    Full text link
    We present a fully self-consistent simulation of a synthetic survey of the furthermost cosmic explosions. The appearance of the first generation of stars (Population III) in the Universe represents a critical point during cosmic evolution, signaling the end of the dark ages, a period of absence of light sources. Despite their importance, there is no confirmed detection of Population III stars so far. A fraction of these primordial stars are expected to die as pair-instability supernovae (PISNe), and should be bright enough to be observed up to a few hundred million years after the big bang. While the quest for Population III stars continues, detailed theoretical models and computer simulations serve as a testbed for their observability. With the upcoming near-infrared missions, estimates of the feasibility of detecting PISNe are not only timely but imperative. To address this problem, we combine state-of-the-art cosmological and radiative simulations into a complete and self-consistent framework, which includes detailed features of the observational process. We show that a dedicated observational strategy using ≲8\lesssim 8 per cent of total allocation time of the James Webb Space Telescope mission can provide us up to ∼9−15\sim 9-15 detectable PISNe per year.Comment: 9 pages, 8 figures. Minor corrections added to match published versio
    • …
    corecore