79,147 research outputs found

    Direct numerical simulation of homogeneous nucleation and growth in a phase-field model using cell dynamics method

    Full text link
    Homogeneous nucleation and growth in a simplest two-dimensional phase field model is numerically studied using the cell dynamics method. Whole process from nucleation to growth is simulated and is shown to follow closely the Kolmogorov-Johnson-Mehl-Avrami (KJMA) scenario of phase transformation. Specifically the time evolution of the volume fraction of new stable phase is found to follow closely the KJMA formula. By fitting the KJMA formula directly to the simulation data, not only the Avrami exponent but the magnitude of nucleation rate and, in particular, of incubation time are quantitatively studied. The modified Avrami plot is also used to verify the derived KJMA parameters. It is found that the Avrami exponent is close to the ideal theoretical value m=3. The temperature dependence of nucleation rate follows the activation-type behavior expected from the classical nucleation theory. On the other hand, the temperature dependence of incubation time does not follow the exponential activation-type behavior. Rather the incubation time is inversely proportional to the temperature predicted from the theory of Shneidman and Weinberg [J. Non-Cryst. Solids {\bf 160}, 89 (1993)]. A need to restrict thermal noise in simulation to deduce correct Avrami exponent is also discussed.Comment: 9 pages, 8 figures, Journal of Chemical Physics to be publishe

    Photovoltaic system test facility electromagnetic interference measurements

    Get PDF
    Field strength measurements on a single row of panels indicates that the operational mode of the array as configured presents no radiated EMI problems. Only one relatively significant frequency band near 200 kHz showed any degree of intensity (9 muV/m including a background level of 5 muV/m). The level was measured very near the array (at 20 ft distance) while Federal Communications Commission (FCC) regulations limit spurious emissions to 15 muV/m at 1,000 ft. No field strength readings could be obtained even at 35 ft distant

    High-precision calculations of dispersion coefficients, static dipole polarizabilities, and atom-wall interaction constants for alkali-metal atoms

    Full text link
    The van der Waals coefficients for the alkali-metal atoms from Na to Fr interacting in their ground states, are calculated using relativistic ab initio methods. The accuracy of the calculations is estimated by also evaluating atomic static electric dipole polarizabilities and coefficients for the interaction of the atoms with a perfectly conducting wall. The results are in excellent agreement with the latest data from ultra-cold collisions and from studies of magnetic field induced Feshbach resonances in Na and Rb. For Cs we provide critically needed data for ultra-cold collision studies

    Enhanced winnings in a mixed-ability population playing a minority game

    Full text link
    We study a mixed population of adaptive agents with small and large memories, competing in a minority game. If the agents are sufficiently adaptive, we find that the average winnings per agent can exceed that obtainable in the corresponding pure populations. In contrast to the pure population, the average success rate of the large-memory agents can be greater than 50 percent. The present results are not reproduced if the agents are fed a random history, thereby demonstrating the importance of memory in this system.Comment: 9 pages Latex + 2 figure

    Incorporating Inertia Into Multi-Agent Systems

    Get PDF
    We consider a model that demonstrates the crucial role of inertia and stickiness in multi-agent systems, based on the Minority Game (MG). The inertia of an agent is introduced into the game model by allowing agents to apply hypothesis testing when choosing their best strategies, thereby reducing their reactivity towards changes in the environment. We find by extensive numerical simulations that our game shows a remarkable improvement of global cooperation throughout the whole phase space. In other words, the maladaptation behavior due to over-reaction of agents is removed. These agents are also shown to be advantageous over the standard ones, which are sometimes too sensitive to attain a fair success rate. We also calculate analytically the minimum amount of inertia needed to achieve the above improvement. Our calculation is consistent with the numerical simulation results. Finally, we review some related works in the field that show similar behaviors and compare them to our work.Comment: extensively revised, 8 pages, 10 figures in revtex

    The impact of two-dimensional elastic disk

    Full text link
    The impact of a two-dimensional elastic disk with a wall is numerically studied. It is clarified that the coefficient of restitution (COR) decreases with the impact velocity. The result is not consistent with the recent quasi-static theory of inelastic collisions even for very slow impact. The abrupt drop of COR is found due to the plastic deformation of the disk, which is assisted by the initial internal motion.(to be published in J. Phys. Soc. Jpn.)Comment: 6 Pages,2 figure

    Deconvolving the information from an imperfect spherical gravitational wave antenna

    Get PDF
    We have studied the effects of imperfections in spherical gravitational wave antenna on our ability to properly interpret the data it will produce. The results of a numerical simulation are reported that quantitatively describe the systematic errors resulting from imperfections in various components of the antenna. In addition, the results of measurements on a room-temperature prototype are presented that verify it is possible to accurately deconvolve the data in practice.Comment: 5 pages, 2 figures, to be published in Europhysics Letter
    corecore