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Incorporating inertia into multiagent systems
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We consider a model that demonstrates the crucial role of inertia and stickiness in multiagent systems, based
on the minority game. The inertia of an agent is introduced into the game model by allowing agents to apply
hypothesis testing when choosing their best strategies, thereby reducing their reactivity toward changes in the
environment. We find by extensive numerical simulations that our game shows a remarkable improvement of
global cooperation throughout the whole phase space. In other words, the maladaptation behavior due to
over-reaction of agents is removed. These agents are also shown to be advantageous over the standard ones,
which are sometimes too sensitive to attain a fair success rate. We also calculate analytically the minimum
amount of inertia needed to achieve the above improvement. Our calculation is consistent with the numerical
simulation results. Finally, we review some related works in the field that show similar behaviors and compare
them to our work.
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I. INTRODUCTION

There is a growing interest in studying artificial agent–
interacting models which are able to generate global behav-
iors found in social, biological, and economical systems �1�.
Examples such as matching games �2� and ideal gas models
of trading markets �3� show that this approach commonly
used by physicists can be nicely applied to problems lying
outside the discipline. One exciting fact is that these artificial
models, although they contain simple governing rules, can
still generate nontrivial global cooperative behaviors �4,5�. In
these self-organized complex systems, agents can reach equi-
librium states through adaptation, a dynamical learning pro-
cess initiated by the feedback mechanism present in these
systems.

People possesses inertia when making decisions and
switching strategies in economical systems. Conceptually,
this inertia is similar to the one used by Newton to describe
body motions in the physical world. It refers to how reluctant
a person is to drop his/her current economics plan and look
for another one, just as an object is reluctant to change its
motion state. Inertia may originate from �1� the cost needed
to change strategies, �2� the low sensitivity toward a change
in environment, and �3� the loss-aversion behavior in humans
�6�—people love to fight back from loss �7�. As different
bodies may have different mass in classical physical systems,
different people may carry different inertia in economical
markets. In this paper, we introduce a simple model to study
the idea of inertia. This model gives a striking improvement
of cooperative behavior, such as removal of maladaptation
�8� and dynamical increase of diversity among agents, with-
out any necessity to alter the initial conditions and payoff
mechanism. Actually, studies of a few variants of the minor-
ity game �MG� also show improvement in cooperation
�9–13�. We shall further discuss their results and compare

with ours in Sec. VI after finishing reporting our model and
results.

Our model is a modification of a famous econophysical
model known as the MG, proposed by Challet and Zhang in
1997 �5,14�. The MG is a simple game model that captures
the minority seeking behavior found in stock markets and
resource competition. �See Refs. �15–17� for an overview of
econophysics and the MG.� In the MG, N agents struggle to
choose between two options repetitively, either buying �0� or
selling �1� in each turn. Those who have chosen the minority
side are winners at that turn and are awarded $1, otherwise
they lose $1. The only information they receive is the history
of the game, which is a binary bit string composed of the
minority choices of the previous M turns. A strategy is a map
from the set of all possible histories to the set of two options.
If a strategy predicts the minority correctly, it gains 1 virtual
score point, otherwise it loses 1 virtual score point. Each
agent is assigned S strategies once and for all at the begin-
ning of the game in order to aid his/her decisions. In the
standard MG, an agent makes decisions based on his/her best
current strategy at hand, namely, the one with the highest
virtual score.

Clearly, there are 2M possible histories and hence 22M

available strategies. However, out of the whole strategy
space, only 2M+1 of them are significantly different. The di-
versity of the population is measured by �, which is equal to
2M+1 /NS. The smaller �, the more similar are the strategies
held by agents. Up to a first-order approximation, the dynam-
ics of the MG is determined by this control parameter �
�18–20�.

The most obvious macroscopic observable in the MG is
perhaps the variance of optional attendance per agent, �2 /N.
It represents the wastage of the system and fluctuation of
resource allocation; the smaller �2 /N, the more the whole
population benefits. Researchers found that �2 /N falls below
the value it would have if all agents make their choices ran-
domly in a certain range of �. This indicates that agents are
cooperating although they are independent and selfish. More*Corresponding author: hfchau@hkusua.hku.hk

PHYSICAL REVIEW E 73, 036106 �2006�

1539-3755/2006/73�3�/036106�9�/$23.00 ©2006 The American Physical Society036106-1

http://dx.doi.org/10.1103/PhysRevE.73.036106


importantly, there is a phase transition at the critical point �c
which divides the �2 /N against � curve into the so-called
symmetric phase ����c� and asymmetric phase ����c�
�21�.

II. OUR MODEL

To incorporate inertia into the MG, we introduce a
modification—the hypothesis testing minority game �HMG�.
Hypothesis testing is a standard statistical tool to test
whether an effect emerging from an independent variable
appears by chance or luck. In the standard version of the
MG, the best strategy is defined as the strategy with the
highest virtual score. In the HMG, however, an agent k de-
termines his/her own best strategies by testing the following
null hypothesis H0: The current strategy Sk,0 performs better
than the other strategy Sk,1 available to agent k. Note that we
have restricted ourselves to the simplest case S=2, but the
model can be easily extended to S�2 cases under the same
formalism. This agent possesses a sustain level Ik�1/2 on
his/her current strategy Sk,0, which is the same as the confi-
dence level on the validity of the null hypothesis we com-
monly use in hypothesis testing �that is, the acceptance area
of a standard normal�. This Ik defines how much he/she could
sustain the underperformance of Sk,0 and thereby represents
his/her inertia.

The H0 of a particular agent k can be quantitatively writ-
ten as

H0:
�k,0��k� − �k,1��k�

	k
� xk, �1�

where

1
�2


�
xk

+�

e−x2/2dx = Ik. �2�

Here, �k,j��k� is the virtual score of a particular strategy Sk,j

at �k, where �k is the number of time steps counted from
his/her adoption of Sk,0 for that individual agent. The domi-
nator 	k represents the fluctuation of the strategies’ perfor-
mance perceived by the agent. An agent k would continue to
stick on his/her current strategy Sk,0 until �k,j��k� descends
outside his/her sustain level. Then he/she has to admit that
H0 is not likely to be true, rejects it, and shifts to the other
strategy. After a change of strategy, the virtual scores of both
strategies are reset to 0 and �k is set back to 1.

The higher the value of Ik, the milder his/her response and
the more reluctant he/she will be to shift strategies. In this
way, Ik plays the role of the inertia of an agent in this game.
Agents with Ik=1/2 would be most similar to the standard
MG agents, employing the strategy with the highest virtual
score. However, there are still two differences: these HMG
agents will still stick on the current strategy in the case of a
tie in virtual scores, and the virtual scores will be reset after
shifts in strategies.

We remark that randomness is involved in only three
places in the HMG, namely, �1� the initial assignment of
strategies and inertia; �2� the choice of a new strategy in case
of a tie in the virtual scores of the alternative strategies when

a player has decided to drop the current one; as well as �3�
the determination of the winning side in the case of a tie.
Thus, the dynamics of the HMG is deterministic when
played by an odd number of agents each carrying two strat-
egies.

III. PURE POPULATION WITH RANDOM WALK
APPROXIMATION

We have performed extensive numerical simulations on
our model. With the presence of inertia among agents, every
agent needs a longer time to make up his/her mind and the
equilibration time in the HMG is lengthened. We take the
value of �2 every 1000 time steps and regard the system as
having equilibrated if the percentage difference of successive
measurements is smaller than �=10−6. Upon equilibration,
we take our measurement by recording the dynamics of the
next 25 000 time steps. Furthermore, we repeat this data tak-
ing procedure 150 times, each with an independent set of
initial conditions.

In a population where everyone tries to cling to the mi-
nority side as long as possible, agents may have different
inertia Ik, and some may have no inertia at all �standard MG
agents�. We first study the behavior of the HMG when every
agent has the same Ik. �We shall move on to study the mixed
population case in later sections.� We begin our study by
determining the value of 	k, a perception of agents of the
fluctuation of the virtual score difference between two strat-
egies. A naive guess would be to assume that �k,j��k� per-
forms a random walk for all strategies j throughout the
game; then 	k equals �2�k.

Figure 1 shows a plot of the variance of attendance for a
particular option �2 /N against the control parameter � for
different inertia I, with 	k set to �2�k. There is a huge drop of
�2 /N when I is sufficiently large, especially in the symmetric
phase when � is small �see Fig. 2�. Not just is the maladap-
tation in the symmetric phase greatly reduced, but the coop-
eration between agents is also improved in the asymmetric
phase for certain values of I.

The reduction of system wastage in the asymmetric phase
����c� is believed to result from increasing stickiness of
agents on current strategies and elongation of their observa-
tion time. This leads to an increase of frozen agents �see Fig.
3� and a more effective crowd-anticrowd cancellation, result-
ing in better cooperation �21–23�.

However, things become more complicated when ���c.
From now on, this paper will focus on the striking improve-
ment of cooperation in the symmetric phase. The removal of
maladaptation in this region is directly related to the disap-
pearance of periodic dynamics that is normally present in the
standard MG. The periodic dynamics is a result of oversam-
pling of strategy space and common zero initial conditions
among agents when ���c, accounting for the high volatility
in the symmetric phase. It is reflected in a prominent period-
2M+1 peak in the autocorrelation of the attendance time series
of a particular option �8,19,20,24,25�. Figure 4 shows evi-
dence of this postulate: as shown from the autocorrelation
function, periodic dynamics appears in the case I=0.53
which has high �2 /N in Figs. 1 and 2, while the low �2 /N
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cases I=0.6 and 0.9 show no trace of this signal.
What is the critical limit of I in order to remove the mal-

adaptation? To answer this, we have to look closely into the
periodic dynamics that governs the maladaptation in the
symmetric phase. An earlier study stated that virtual scores
of strategies are likely to reset to 0 every 2M+1 number of
steps through the periodic dynamics in the symmetric phase.
Initially all strategies have score point 0; whenever a strategy
 wins a bet in a particular �, most agents would rush to ,

which is 2 score points ahead of its anticorrelated partner ̄
in the next appearance of �. It is likely that they would lose
due to this overcrowding. In this manner, the virtual scores
of all strategies are reset at this stage. This loop repeats with
interval 2M+1 and leads to the large fluctuation of option
attendance in the symmetric phase �26�.

Therefore, the question becomes when this reset and os-
cillate mechanism will disappear. Actually, the periodic dy-
namics is destroyed when agents are no longer sensitive

enough to immediately shift to a particular strategy after
winning a bet. The criterion for this situation to occur is
given by

− 2
�2�2M+1�

� xk, �3�

where xk satisfies Eq. �2�. If the value of I satisfies the in-
equality �3�, agents will no longer be constrained by the pe-
riodic dynamics every 2M+1 steps. Then, a re-recognizing
process will begin. In the standard MG, all identical strate-
gies have the same virtual scores throughout the game. How-
ever, in the HMG agents clear all virtual scores after chang-
ing strategies. This move is done in various time steps for
different agents, depending on the combination of strategies
in their hands. Hence, the scores of identical strategies even-
tually diverge if they are held by different agents, and these
strategies may be employed again at many times in the fu-

FIG. 1. �Color online� The
variance of attendance per agent,
�2 /N, against the system com-
plexity � for I= �a� 0.53, �b� 0.6,
and �c� 0.9, setting 	k=�2�k.
Here, N=501 and S=2. The
dashed line represents the �2 /N
curve in the standard MG.

FIG. 2. The variance of atten-
dance per agent, �2 /N, against I at
�=0.06, setting 	k=�2�k. Here,
N=501, S=2, and M =5.
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ture. The net effect of this re-recognizing process is to diver-
sify strategies in the population intrinsically. In this way,
both the oversampling and overcrowding found in the sym-
metric phase are relaxed, lowering the volatility.

For instance, when M =5, the limit xc equals
−2/�2�25+1�=−0.177; that is, I�0.57. This criterion is con-
firmed in Figs. 2 and 4—all cases that show no periodic
dynamics, satisfy Eq. �3�, and have low variance. Note that
for the cases where I does not exceed this limit, their corre-
lation signals are much stronger than that of the standard MG
�see Fig. 4�b��. It is because the dynamics of the HMG is
more deterministic than that of the standard MG as HMG
agents will continue to stick on the current strategy when
facing a tie in strategy virtual scores, which happens during a
reset. That means their actions repeat during this reset and
the system path is more likely to repeat, resulting in stronger

correlation. This is like removing the random dice in the
standard MG when facing a tie in virtual scores; a periodic
signal as in strong as this case is also obtained.

IV. PURE POPULATION WITH RUN TIME �k

Actually, the movement of the virtual score difference be-
tween two strategies is not likely to perform a random walk.
Another possible way to perceive 	k is to put it as the actual
standard deviation of this difference in run time, which rep-
resents a more realistic market scenario. That is,

	k = ����k,0��k� − �k,1��k��2	�k
− ��k,0��k� − �k,1��k�	�k

2 .

�4�

The results are very similar to the previous case, and are
shown in Figs. 5–7. However, the critical value of I for the

FIG. 3. �Color online� The fro-
zen probability � against � for
different I by setting 	k=�2�k.
The dashed line represents the fro-
zen probability of the standard
agents in the MG. Here, N=501,
S=2, and M =5.

FIG. 4. The autocorrelation of
attendance C0 against various in-
tervals � in �a� standard MG, and
for I= �b� 0.53, �c� 0.6, and �d� 0.9
averaged over 50 independent
runs. Here, N=501, M =5, and S
=2.
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system to escape from the grip of periodic dynamics appears
to be higher. Recall that the virtual score difference of two
strategies performs a random walk with the following step
sizes and probabilities p:

�k,0 − �k,1 = 
+ 2 with p = 1/4,

− 2 with p = 1/4,

0 with p = 1/2.
� �5�

Meanwhile, the presence of periodic dynamics ensures a re-
set every 2M+1 time steps. We can approximately calculate
the average variance by considering all possible traveling
paths, which equals 2M+1 /12 �the detailed mathematics is
shown in the Appendix�. For instance, when M =5, the criti-
cal value for the periodic dynamics to disappear is xc�
−2/�25+1 /12=−0.866; that is, I�0.81. This value of I is
consistent with the data presented in Figs. 6 and 7. Again, we
believe that after the breaking of periodic dynamics, the re-

recognizing process mentioned in the previous section comes
in and diversifies the strategy space, resulting in a drop of
fluctuation.

V. MIXED POPULATION WITH STANDARD MG AGENTS

It is already clear that a pure population of agents having
inertia reduces system wastage. Now it is instructive to study
whether these agents �sticky agents� are advantageous over
standard MG agents �sensitive agents� in a mixed population.

Figure 8 gives the success rates of both races against � in
the mixed population with I=0.9, where � is the fraction of
sticky agents in the population. Clearly, these sticky agents
take advantage of the sensitive agents for the whole range of
�; they are able to maintain their success rates close to 0.5.
The sensitive agents are believed to be made more sensitive
by the periodic dynamics, making them keep on losing. On
the other hand, sticky agents are likely to win more fre-

FIG. 5. �Color online� The
variance of attendance per agent,
�2 /N, against the system com-
plexity � for I= �a� 0.55, �b� 0.6,
and �c� 0.9, with 	k given by Eq.
�4�. Here, N=501 and S=2. The
dashed line represents the �2 /N
curve in the standard MG.

FIG. 6. The variance of atten-
dance per agent, �2 /N, against I at
�=0.06, setting 	k to satisfy Eq.
�4�. Here, N=501, S=2, and M
=5.
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quently as they are resistant to following the oscillation.
Note that the whole population also benefits from adding in
more sticky agents �see the triangles in Fig. 8�. When � is
increased up to about 0.6, Ws starts to rise. It is because the
crowd of sensitive agents is no longer large enough to over-
ride the net actions made by sticky agents, and therefore
there is no more periodic dynamics existing. Figure 9 con-
firms our suspicion; the periodic dynamics disappears around
�=0.6. We have also performed simulations on a mixed
population of sensitive agents and sticky agents with other
values of I. As expected, sticky agents are only advantageous
when I exceeds the critical value that allows them to escape
from the periodic dynamics mentioned in the last section.
Otherwise, all agents in the whole population will still suffer
from overcrowding and no one will be benefited.

VI. PREVIOUS STUDIES IN THE LITERATURE AND
COMPARISON WITH OUR RESULTS

The reduction of the volatility by modifying the rules or
the initial conditions of the standard MG is not a new idea in
the field, especially for the symmetric phase. A few previous
studies have shown results quite similar to that of the HMG.
Here, we would like to first give a short review of these
works and then compare them with our study.

A. Thermal minority game

Cavagna et al. proposed the thermal minority game
�TMG� �9�, which adds stochasticity into the standard MG.
In the TMG, an agent does not strictly employ the strategy
with highest virtual score, rather he/she uses a strategy with

FIG. 7. The autocorrelation of
attendance C0 against various in-
tervals i on �a� standard MG, and
I= �b� 0.55, �c� 0.6, and �d� 0.9 av-
eraged over 50 independent runs.
Here, N=501, M =5, and S=2,
and 	k is given by Eq. �4�.

FIG. 8. �Color online� A plot
of success rate of sticky agents
Wh, sensitive agents Ws, and the
whole population W against the
fraction of sticky agents � in the
mixed group. There are total 501
agents, with M =5, S=2, and I
=0.9.
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probability calculated according to its virtual score and a
fixed inverse temperature T. In other words, the employment
of strategies by agents become probabilistic with the degree
of stochasticity depending on T. They found that for a certain
range of T, the volatility in the game is reduced in most
ranges of the control parameter �. That is, in both symmetric
and asymmetric phases, the TMG succeeds in raising the
degree of cooperation between agents by introducing noises
into the decision process of strategy selection for individual
agents.

In search of the continuous time dynamics of the TMG,
Garrahan et al. confirm by numerical simulation that the dy-
namics in the symmetric phase of the MG is sensitive to
initial conditions. In particular, they reported that the volatil-
ity would drop far from the original value if random initial
conditions are assigned to strategies �with O�1� initial virtual
scores for a population of 100 agents� at the beginning of the
game �10�.

B. Nash equilibrium

In searching for the replica solution and the Nash equilib-
rium for the symmetric phase of the standard MG, Challet et
al. found that the Nash equilibrium is not unique and agents
at these equilibria use pure strategies �that is, they either
always choose 1 or always choose 0� �11�. In Nash equilib-
rium, agents perform much better than in the standard MG;
the volatility is greatly suppressed in the symmetric phase.

C. Consideration of agents’ own market impact in evaluation
of strategy

Challet et al. try to let the agents consider their own im-
pact on the market during the evaluation of all strategies
available to them. That is, the virtual score of a strategy is
proportional to the cumulated payoff the agent would have
received had he or she always played the strategy. Although
the difference between this evaluation of virtual score and
the original one is believed to be small ��1/�N�, the vola-
tility is found to be far lower than in the original MG. This
difference is not negligible because of the finite size effect
and the high degree of oversampling of the strategy space
when ���c. However, this setting is computationally inten-
sive and unrealistic, as a person in a real market usually can
only obtain information on his/her own current wealth and is
unlikely to try out all strategies �11�.

D. Analytical solutions of the batch minority game and the
online minority game

In the batch minority game, the virtual score of a particu-
lar strategy is updated as the discrete accumulated effect of
order-N iterations in the standard MG model, whereas the
MG having the original updating method can be viewed as
an “online” minority game in the neural network sense. After
adding in stochasticity, initial evaluation, and generalizing
these games to the continuous time limit, Coolen and co-
workers have extensively written out the analytical solutions
of these two versions of the MG. They found that in the

FIG. 9. The autocorrelation of attendance C0 for different � averaged over 50 independent runs. Here, N=501, M =5, S=2, and I=0.9.

INCORPORATING INERTIA INTO MULTIAGENT SYSTEMS PHYSICAL REVIEW E 73, 036106 �2006�

036106-7



symmetric phase their theory pointed at the existence of a
critical value for the initial strategy valuations above which
the system will revert to a state with vanishing volatility
�12,13�.

E. Introduction of diversity

Wong et al. pointed out in �8� that the maladaptation ob-
served in the symmetric phase in the standard MG originates
from the fact that the initial virtual scores of all strategies are
the same. They then studied the effect of introducing diver-
sity R /N into the game, where R is the range of randomly
assigned initial scores to strategies at the beginning of the
game and N is the number of agents. They found that by
increasing the diversity, the maladaptive behavior observed
in the symmetric phase ���c is reduced and hence the co-
operation among agents is promoted.

F. Comparison to our model

From the above studies, we can conclude that the volatil-
ity will be suppressed under the following conditions: �1�
randomly allocating the initial strategy score over a critical
value, �2� adding in noise or stochasticity in choosing a strat-
egy, �3� assigning a pure strategy, or �4� taking an agent’s
impact on the market into account when evaluating all strat-
egies.

First, we would like to stress that the main focus in this
paper is to provide a simple formalism to incorporate inertia
into a multiagent system such as the MG, as well as record-
ing its influence on the dynamics of the game. In the HMG,
there is no prior preference in strategies for they have the
same initial virtual score. Unlike the standard MG, soon after
the commencement of the HMG, the preference for a strat-
egy is determined by both the virtual score differences be-
tween strategies at hand and the inertia Ik of agent k.
Through the presence of inertia, each agent will gradually
develop its own preference in strategies through dynamical
adaptation. In this respect, even though the presence of iner-
tia may eventually lead to different views of an identical
strategy between agents, this is achieved by an adaptive pro-
cess through the dynamics of the system but not by artifi-
cially assigning a spread of initial virtual scores. This is a
marked difference between the HMG and the work of Wong
et al. �8�, Garrahan et al. �10�, and Heimal and Coolen
�12,13�. More importantly, the spreading of initial virtual
scores of strategies would only lead to a drop of volatility in
the symmetric phase, but not the asymmetric phase. In the
HMG, however, there is a global improvement in both
phases for a certain value of I.

We believed the TMG presents results most similar to our
game. In both cases, the degree of cooperation is increased in
most ranges of �. However, as mentioned previously, the
TMG achieves this by adding stochasticity and noise into the
agents’ choice of best strategies. Meanwhile, in the HMG the
agents are deterministic when choosing their best strategies:
they stick to their current strategy until it is outperformed at
a certain threshold; this does not involve any stochasticity. In
fact, the dynamics of the HMG is deterministic when played
by an odd number of agents each carrying two strategies.

Lastly, we think that using pure strategies and taking
agents themselves into account when evaluating all their
strategies is impractical and an unrealistic situation. Our
model provides a natural, realistic way to prompt coopera-
tion, meanwhile demonstrating the effect of stickiness when
people change their investment strategies.

VII. CONCLUSIONS

We have successfully introduced the concept of inertia
into the minority game, which shows a remarkable improve-
ment of cooperation among agents in most ranges of �, es-
pecially in the symmetric phase ���c. We also compare our
findings with a few variants of the MG reported in the litera-
ture. We calculated the critical values of inertia needed to
uplift the cooperation behaviors, which depends on how
agents perceive the fluctuation of the virtual score difference
between strategies. This reduction of sensitivity among
agents is found to be useful in removing maladaptation due
to over-reaction. In contrast, if every action is smooth and all
agents respond to information in no time, they will suffer
from overcrowding easily. Meanwhile, agents carrying
stickiness seem to perform much better than sensitive agents.
Our findings suggest that inertia �or stickiness� is crucial and
beneficial to a society. It is hoped that the role of inertia will
be investigated in more detail based on our model HMG; the
effect of giving a diversifying range of inertia to a population
would be interesting. It is also instructive to apply our
method of modeling inertia to study the inertia effect in other
multiagent systems.
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APPENDIX

In this appendix, we consider a simple random walk of
cumulative sum xt after time t. At each step, xt increases
�decreases� by 1 if the article moves upward �downward�
with probability 1 /2. We also impose a boundary condition
that the sum is equal to 0 at both t=0 and t=T. A schematic
diagram is shown in Fig. 10. Under this constraint, we find-

FIG. 10. �Color online� A schematic sketch showing a typical
random walk of a particle traveling for T time step.
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that the variance of xt averages over all possible paths �r
2

= t�T− t� /4T. Using this formula, we can evaluate the average
standard deviation of the virtual score difference of an
agent’s strategies within a period 2M+1, that is, the 	k men-
tioned in Eq. �4�.

First, we need to know the probability of xt within k and
k+dk, which is given by �27�

P�k � xt � k + dk� � 2


t
e−2k2/tdk . �A1�

Hence, the probability of the cumulative sum xt to be within
k and k+dk at time t and xT to be within l and l+dl at time
T can be expressed by

P�k � xt � k + dk and l � xT � l + dl�

= P�k � xt � k + dk�P�l − k � xT−t � l − k + dl�
�A2�

where t�T. The equality follows from the fact that the dis-
crete step size is equal to 1. Using Eqs. �A1� and �A2�, the
conditional probability

P�k � xt � k + dk�l � xT � l + dl�

=
P�k � xt � k + dk and l � xT � l + dl�

P�l � xT � l + dl�
�A3�

=
�2/
te−2k2/t�2/
�T − t�e−2�l − k�2/�T−t�dk dl

�2/
Te−2l2/Tdl
.

�A4�

By the boundary condition 0�xT�dl, then we have

P�k � xt � k + dk�0 � xT � dl� =� 2T


t�T − t�
e−2Tk2/t�T−t�dk .

�A5�

Therefore, the variance �r
2 averaged over all possible paths is

�r
2 = �

−�

+�

k2P�k � xt � k + dk�0 � xT � dl� �A6�

=
t�T − t�

4T
. �A7�

In order to calculate 	k
2, we should rescale �r

2 because the
virtual score difference of an agent’s strategies can move two
steps upward �+2� or two steps downward �−2� or stay sta-
tionary �0�. Hence, by approximating the travel time T as
consisting of an infinit number of time steps:

	k
2 = 2� 1

T
��

0

T t�T − t�
4T

dt =
T

12
. �A8�

where 	k is the perceived fluctuation mentioned in Eq. �4�.
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