83,759 research outputs found

    Multi-Agent Complex Systems and Many-Body Physics

    Full text link
    Multi-agent complex systems comprising populations of decision-making particles, have many potential applications across the biological, informational and social sciences. We show that the time-averaged dynamics in such systems bear a striking resemblance to conventional many-body physics. For the specific example of the Minority Game, this analogy enables us to obtain analytic expressions which are in excellent agreement with numerical simulations.Comment: Accepted for publication in Europhysics Letter

    Generating functional analysis of Minority Games with real market histories

    Full text link
    It is shown how the generating functional method of De Dominicis can be used to solve the dynamics of the original version of the minority game (MG), in which agents observe real as opposed to fake market histories. Here one again finds exact closed equations for correlation and response functions, but now these are defined in terms of two connected effective non-Markovian stochastic processes: a single effective agent equation similar to that of the `fake' history models, and a second effective equation for the overall market bid itself (the latter is absent in `fake' history models). The result is an exact theory, from which one can calculate from first principles both the persistent observables in the MG and the distribution of history frequencies.Comment: 39 pages, 5 postscript figures, iop styl

    PPAK Wide-field Integral Field Spectroscopy of NGC 628: I. The largest spectroscopic mosaic on a single galaxy

    Full text link
    We present a wide-field IFS survey on the nearby face-on Sbc galaxy NGC 628, comprising 11094 individual spectra, covering a nearly circular field-of-view of ~6 arcmin in diameter, with a sampling of ~2.7 arcsec per spectrum in the optical wavelength range (3700--7000 AA). This galaxy is part of the PPAK IFS Nearby Galaxies Survey, (PINGS, Rosales-Ortega et al. 2009). To our knowledge, this is the widest spectroscopic survey ever made in a single nearby galaxy. A detailed flux calibration was applied, granting a spectrophotometric accuracy of \sim\,0.2 mag. The age of the stellar populations shows a negative gradient from the inner (older) to the outer (younger) regions. We found an inversion of this gradient in the central ~1 kpc region, where a somewhat younger stellar population is present within a ring at this radius. This structure is associated with a circumnuclear star-forming region at ~ 500 pc, also found in similar spiral galaxies. From the study of the integrated and spatially resolved ionized gas we found a moderate SFR of ~ 2.4 Msun yr1^{-1}. The oxygen abundance shows a a clear gradient of higher metallicity values from the inner part to the outer part of the galaxy, with a mean value of 12~+~log(O/H) ~ 8.7. At some specific regions of the galaxy, the spatially resolved distribution of the physical properties show some level of structure, suggesting real point-to-point variations within an individual \hh region. Our results are consistent with an inside-out growth scheme, with stronger star formation at the outer regions, and with evolved stellar populations in the inner ones.Comment: 31 pages, 22 Figuras, Accepted for Publishing in MNRAS (corrected PDF

    Incorporating Inertia Into Multi-Agent Systems

    Get PDF
    We consider a model that demonstrates the crucial role of inertia and stickiness in multi-agent systems, based on the Minority Game (MG). The inertia of an agent is introduced into the game model by allowing agents to apply hypothesis testing when choosing their best strategies, thereby reducing their reactivity towards changes in the environment. We find by extensive numerical simulations that our game shows a remarkable improvement of global cooperation throughout the whole phase space. In other words, the maladaptation behavior due to over-reaction of agents is removed. These agents are also shown to be advantageous over the standard ones, which are sometimes too sensitive to attain a fair success rate. We also calculate analytically the minimum amount of inertia needed to achieve the above improvement. Our calculation is consistent with the numerical simulation results. Finally, we review some related works in the field that show similar behaviors and compare them to our work.Comment: extensively revised, 8 pages, 10 figures in revtex

    Spin-glasses in optical cavity

    Full text link
    Recent advances in nanofabrication and optical control have garnered tremendous interest in multi-qubit-cavity systems. Here we analyze a spin-glass version of such a nanostructure, solving analytically for the phase diagrams in both the matter and radiation subsystems in the replica symmetric regime. Interestingly, the resulting phase transitions turn out to be tunable simply by varying the matter-radiation coupling strength

    Dynamics of adaptive agents with asymmetric information

    Full text link
    We apply path-integral techniques to study the dynamics of agent-based models with asymmetric information structures. In particular, we devise a batch version of a model proposed originally by Berg et al. [Quant. Fin. 1 (2001) 203], and convert the coupled multi-agent processes into an effective-agent problem from which the dynamical order parameters in ergodic regimes can be derived self-consistently together with the corresponding phase structure. Our dynamical study complements and extends the available static theory. Results are confirmed by numerical simulations.Comment: minor revision of text, accepted by JSTA

    Multi-Player Quantum Games

    Get PDF
    Recently the concept of quantum information has been introduced into game theory. Here we present the first study of quantum games with more than two players. We discover that such games can possess a new form of equilibrium strategy, one which has no analogue either in traditional games or even in two-player quantum games. In these `pure' coherent equilibria, entanglement shared among multiple players enables new kinds of cooperative behavior: indeed it can act as a contract, in the sense that it prevents players from successfully betraying one-another.Comment: 5 pages, 2 figs. Substantial revisons inc. new result

    The Anti-Coincidence Detector for the GLAST Large Area Telescope

    Get PDF
    This paper describes the design, fabrication and testing of the Anti-Coincidence Detector (ACD) for the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT). The ACD is LAT first-level defense against the charged cosmic ray background that outnumbers the gamma rays by 3-5 orders of magnitude. The ACD covers the top and 4 sides of the LAT tracking detector, requiring a total active area of ~8.3 square meters. The ACD detector utilizes plastic scintillator tiles with wave-length shifting fiber readout. In order to suppress self-veto by shower particles at high gamma-ray energies, the ACD is segmented into 89 tiles of different sizes. The overall ACD efficiency for detection of singly charged relativistic particles entering the tracking detector from the top or sides of the LAT exceeds the required 0.9997.Comment: 33 pages, 19 figure

    Effects of noise and confidence thresholds in nominal and metric Axelrod dynamics of social influence

    Full text link
    We study the effects of bounded confidence thresholds and of interaction and external noise on Axelrod's model of social influence. Our study is based on a combination of numerical simulations and an integration of the mean-field Master equation describing the system in the thermodynamic limit. We find that interaction thresholds affect the system only quantitatively, but that they do not alter the basic phase structure. The known crossover between an ordered and a disordered state in finite systems subject to external noise persists in models with general confidence threshold. Interaction noise here facilitates the dynamics and reduces relaxation times. We also study Axelrod systems with metric features, and point out similarities and differences compared to models with nominal features. Metric features are used to demonstrate that a small group of extremists can have a significant impact on the opinion dynamics of a population of Axelrod agents.Comment: 15 pages, 12 figure

    Stationary states of a spherical Minority Game with ergodicity breaking

    Full text link
    Using generating functional and replica techniques, respectively, we study the dynamics and statics of a spherical Minority Game (MG), which in contrast with a spherical MG previously presented in J.Phys A: Math. Gen. 36 11159 (2003) displays a phase with broken ergodicity and dependence of the macroscopic stationary state on initial conditions. The model thus bears more similarity with the original MG. Still, all order parameters including the volatility can computed in the ergodic phases without making any approximations. We also study the effects of market impact correction on the phase diagram. Finally we discuss a continuous-time version of the model as well as the differences between on-line and batch update rules. Our analytical results are confirmed convincingly by comparison with numerical simulations. In an appendix we extend the analysis of the earlier spherical MG to a model with general time-step, and compare the dynamics and statics of the two spherical models.Comment: 26 pages, 8 figures; typo correcte
    corecore