105,487 research outputs found

    Multi-Agent Complex Systems and Many-Body Physics

    Full text link
    Multi-agent complex systems comprising populations of decision-making particles, have many potential applications across the biological, informational and social sciences. We show that the time-averaged dynamics in such systems bear a striking resemblance to conventional many-body physics. For the specific example of the Minority Game, this analogy enables us to obtain analytic expressions which are in excellent agreement with numerical simulations.Comment: Accepted for publication in Europhysics Letter

    Blood volume changes

    Get PDF
    Analysis of radionuclide volume determinations made for the crewmembers of selected Gemini and Apollo missions showed that orbital spaceflight has an effect on red cell mass. Because the methods and the protocol developed for earlier flights were used for the crews of the three Skylab missions, direct comparisons are possible. After each Skylab mission, decreases were found in crewmembers' red cell masses. The mean red cell mass decrease of 11 percent or 232 milliliters was approximately equal to the 10 percent mean red cell mass decrease of the Apollo 14 to 17 crewmembers. The red cell mass drop was greatest and the postrecovery reticulocyte response least for crewmembers of the 28-day Skylab 2 mission. Analyses of data from the red cell mass determinations indicate that the red cell mass drops occurred in the first 30 days of flight and that a gradual recovery of the red cell mass deficits began approximately 60 days after launch. The beginning of red cell mass regeneration during the Skylab 4 flight may explain the higher postmission reticulocyte counts

    Frequency and timing system for the consolidated DSN and STDN tracking network

    Get PDF
    The consolidation on the existing Deep Space Network (DSN) and colocated Goddard Spaceflight Tracking and Data Network (STDN) stations into a multiple antenna array is discussed. Each site includes a signal processing center (SPC) centered in an array of four or five antennas each located within approximately 300 to 800 meters of the SPC. A central frequency and timing system (FTS) located in the SPC contains reference frequency, timing and time code generation, and distribution equipment for both the SPC and each antenna with its associated front end antenna control building. The reference frequency distribution and clock equipment are driven by a hydrogen maser as the prime frequency standard with cesium beam frequency standard as the secondary

    Clonal mixing in the soldier-producing aphid <i>Pemphigus spyrothecae</i> (Hemiptera: Aphididae)

    Get PDF
    Illuminating the genetic relationships within soldier-producing aphid colonies is an essential element of any attempt to explain the evolution of the altruistic soldier caste. Pemphigus spyrothecae is a soldier-producing aphid that induces galls on the leaf petioles of its host (trees of the genus Populus). At least a quarter of the aphids within the clonally produced gall population are morphologically and behaviourally distinct first-instar soldiers that defend the gall population from predation. Using field trapping and microsatellites, we investigated the degree of clonal mixing within natural gall populations. Field trapping in the UK showed that all the migrants of P. spyrothecae and of two other Pemphigus species were wingless first-instar soldiers. The average degree of mixing estimated from trapping P. spyrothecae migrants was 0.68% (range = 0–15%). Microsatellite genotyping of 277 aphids from 13 galls collected in Italy revealed an average mixing level of 10.4% (range = 0–59%). Six galls contained more than one clone (range = 2–5 clones). Non-kin aphids were not restricted to the soldier caste but were evenly distributed across instars. An additional gall, from which 527 occupants were genotyped, contained 12 non-kin aphids distributed among nine clones, showing that clonal diversity can be high even when mixing is very low. These observations suggest that although soldiers migrate regularly and can moult and reproduce within foreign galls, clonal mixing in this species is generally low and is unlikely to provide a barrier to the evolution of investment by the aphid clones in an altruistic soldier caste

    A Framework to Manage the Complex Organisation of Collaborating: Its Application to Autonomous Systems

    Full text link
    In this paper we present an analysis of the complexities of large group collaboration and its application to develop detailed requirements for collaboration schema for Autonomous Systems (AS). These requirements flow from our development of a framework for collaboration that provides a basis for designing, supporting and managing complex collaborative systems that can be applied and tested in various real world settings. We present the concepts of "collaborative flow" and "working as one" as descriptive expressions of what good collaborative teamwork can be in such scenarios. The paper considers the application of the framework within different scenarios and discuses the utility of the framework in modelling and supporting collaboration in complex organisational structures

    Vertex Operators and Soliton Time Delays in Affine Toda Field Theory

    Get PDF
    In a space-time of two dimensions the overall effect of the collision of two solitons is a time delay (or advance) of their final trajectories relative to their initial trajectories. For the solitons of affine Toda field theories, the space-time displacement of the trajectories is proportional to the logarithm of a number XX depending only on the species of the colliding solitons and their rapidity difference. XX is the factor arising in the normal ordering of the product of the two vertex operators associated with the solitons. XX is shown to take real values between 00 and 11. This means that, whenever the solitons are distinguishable, so that transmission rather than reflection is the only possible interpretation of the classical scattering process, the time delay is negative and so an indication of attractive forces between the solitons.Comment: p. 24 Latex, Swansea-SWAT/93-94/3

    Accommodation of lattice mismatch in Ge_(x)Si_(1−x)/Si superlattices

    Get PDF
    We present evidence that the critical thickness for the appearance of misfit defects in a given material and heteroepitaxial structure is not simply a function of lattice mismatch. We report substantial differences in the relaxation of mismatch stress in Ge_(0.5)Si_(0.5)/Si superlattices grown at different temperatures on (100) Si substrates. Samples have been analyzed by x‐ray diffraction, channeled Rutherford backscattering, and transmission electron microscopy. While a superlattice grown at 365 °C demonstrates a high degree of elastic strain, with a dislocation density <10^5 cm^(−2) , structures grown at higher temperatures show increasing numbers of structural defects, with densities reaching 2×10^(10) cm^(−2) at a growth temperature of 530 °C. Our results suggest that it is possible to freeze a lattice‐mismatched structure in a highly strained metastable state. Thus it is not surprising that experimentally observed critical thicknesses are rarely in agreement with those predicted by equilibrium theories

    Doping of a One-Dimensional Mott Insulator: Photoemision and Optical Studies of Sr2_2CuO3+δ_{3+\delta}

    Get PDF
    The spectral properties of a one-dimensional (1D) single-chain Mott insulator Sr2_2CuO3_{3} have been studied in angle-resolved photoemission and optical spectroscopy, at half filling and with small concentrations of extra charge doped into the chains via high oxygen pressure growth. The single- particle gap is reduced with oxygen doping, but the metallic state is not reached. The bandwidth of the charge-transfer band increases with doping, while the state becomes narrower, allowing unambiguous observation of separated spinon and holon branches in the doped system. The optical gap is not changed upon doping, indicating that a shift of chemical potential rather than decrease of corelation gap is responsible for the apparent reduction of the photoemission gap.Comment: 4 pages, 2 figure

    Surface Encapsulation for Low-Loss Silicon Photonics

    Get PDF
    Encapsulation layers are explored for passivating the surfaces of silicon to reduce optical absorption in the 1500-nm wavelength band. Surface-sensitive test structures consisting of microdisk resonators are fabricated for this purpose. Based on previous work in silicon photovoltaics, coatings of SiNx and SiO2 are applied under varying deposition and annealing conditions. A short dry thermal oxidation followed by a long high-temperature N2 anneal is found to be most effective at long-term encapsulation and reduction of interface absorption. Minimization of the optical loss is attributed to simultaneous reduction in sub-bandgap silicon surface states and hydrogen in the capping material.Comment: 4 pages, 3 figure
    corecore