1,957 research outputs found
Maine’s Winter Roads: Salt, Safety, Environment and Cost
This report summarizes key findings from a yearlong study of the issues and practices in winter maintenance of Maine’s roads
Recommended from our members
Implementation of U.K. Earth system models for CMIP6
We describe the scientific and technical implementation of two models for a core set of
experiments contributing to the sixth phase of the Coupled Model Intercomparison Project (CMIP6).
The models used are the physical atmosphere-land-ocean-sea ice model HadGEM3-GC3.1 and the
Earth system model UKESM1 which adds a carbon-nitrogen cycle and atmospheric chemistry to
HadGEM3-GC3.1. The model results are constrained by the external boundary conditions (forcing data)
and initial conditions.We outline the scientific rationale and assumptions made in specifying these.
Notable details of the implementation include an ozone redistribution scheme for prescribed ozone
simulations (HadGEM3-GC3.1) to avoid inconsistencies with the model's thermal tropopause, and land use
change in dynamic vegetation simulations (UKESM1) whose influence will be subject to potential biases in
the simulation of background natural vegetation.We discuss the implications of these decisions for
interpretation of the simulation results. These simulations are expensive in terms of human and CPU
resources and will underpin many further experiments; we describe some of the technical steps taken to
ensure their scientific robustness and reproducibility
Identifying Ligand Binding Conformations of the β2-Adrenergic Receptor by Using Its Agonists as Computational Probes
Recently available G-protein coupled receptor (GPCR) structures and biophysical studies suggest that the difference between the effects of various agonists and antagonists cannot be explained by single structures alone, but rather that the conformational ensembles of the proteins need to be considered. Here we use an elastic network model-guided molecular dynamics simulation protocol to generate an ensemble of conformers of a prototypical GPCR, β2-adrenergic receptor (β2AR). The resulting conformers are clustered into groups based on the conformations of the ligand binding site, and distinct conformers from each group are assessed for their binding to known agonists of β2AR. We show that the select ligands bind preferentially to different predicted conformers of β2AR, and identify a role of β2AR extracellular region as an allosteric binding site for larger drugs such as salmeterol. Thus, drugs and ligands can be used as "computational probes" to systematically identify protein conformers with likely biological significance. © 2012 Isin et al
Are Tall People Less Risk Averse than Others?
This paper examines the question of whether risk aversion of prime-age workers is negatively correlated with human height to a statistically significant degree. A variety of estimation methods, tests and specifications yield robust results that permit one to answer this question in the affirmative. Hausman-Taylor panel estimates, however, reveal that height effects disappear if personality traits and skills, parents' behaviour, and interactions between environment and individual abilities appear simultaneously. Height is a good proxy for these influences if they are not observable. Not only one factor but a combination of several traits and interaction effects can describe the time-invariant individual effect in a panel model of risk attitude
Work Hours and Self rated Health of Hospital Doctors in Norway and Germany. A comparative study on national samples
<p>Abstract</p> <p>Background</p> <p>The relationship between extended work hours and health is well documented among hospital doctors, but the effect of national differences in work hours on health is unexplored. The study examines the relationship between work hours and self rated health in two national samples of hospital doctors.</p> <p>Methods</p> <p>The study population consisted of representative samples of 1,260 German and 562 Norwegian hospital doctors aged 25-65 years (N = 1,822) who received postal questionnaires in 2006 (Germany) and 2008 (Norway). The questionnaires contained items on demography, work hours (number of hours per workday and on-call per month) and self rated subjective health on a five point scale - dichotomized into "good" (above average) and "average or below".</p> <p>Results</p> <p>Compared to Norway, a significantly higher proportion of German doctors exceeded a 9 hour work day (58.8% vs. 26.7%) and 60 hours on-call per month (63.4% vs. 18.3%). Every third (32.2%) hospital doctor in Germany worked more than this, while this pattern was rare in Norway (2.9%). In a logistic regression model, working in Norway (OR 4.17; 95% CI 3.02-5.73), age 25-44 years (OR 1.66; 95% CI 1.29-2.14) and not exceeding 9 hour work day and 60 hours on-call per month (OR 1.35; 95% CI 1.03-1.77) were all independent significant predictors of good self reported health.</p> <p>Conclusion</p> <p>A lower percentage of German hospital doctors reported self rated health as "good", which is partly explained by the differences in work time pattern. Initiatives to increase doctors' control over their work time are recommended.</p
A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale
In this era of complete genomes, our knowledge of neuroanatomical circuitry
remains surprisingly sparse. Such knowledge is however critical both for basic
and clinical research into brain function. Here we advocate for a concerted
effort to fill this gap, through systematic, experimental mapping of neural
circuits at a mesoscopic scale of resolution suitable for comprehensive,
brain-wide coverage, using injections of tracers or viral vectors. We detail
the scientific and medical rationale and briefly review existing knowledge and
experimental techniques. We define a set of desiderata, including brain-wide
coverage; validated and extensible experimental techniques suitable for
standardization and automation; centralized, open access data repository;
compatibility with existing resources, and tractability with current
informatics technology. We discuss a hypothetical but tractable plan for mouse,
additional efforts for the macaque, and technique development for human. We
estimate that the mouse connectivity project could be completed within five
years with a comparatively modest budget.Comment: 41 page
Pairwise maximum entropy models for studying large biological systems: when they can and when they can't work
One of the most critical problems we face in the study of biological systems
is building accurate statistical descriptions of them. This problem has been
particularly challenging because biological systems typically contain large
numbers of interacting elements, which precludes the use of standard brute
force approaches. Recently, though, several groups have reported that there may
be an alternate strategy. The reports show that reliable statistical models can
be built without knowledge of all the interactions in a system; instead,
pairwise interactions can suffice. These findings, however, are based on the
analysis of small subsystems. Here we ask whether the observations will
generalize to systems of realistic size, that is, whether pairwise models will
provide reliable descriptions of true biological systems. Our results show
that, in most cases, they will not. The reason is that there is a crossover in
the predictive power of pairwise models: If the size of the subsystem is below
the crossover point, then the results have no predictive power for large
systems. If the size is above the crossover point, the results do have
predictive power. This work thus provides a general framework for determining
the extent to which pairwise models can be used to predict the behavior of
whole biological systems. Applied to neural data, the size of most systems
studied so far is below the crossover point
Investigating the spatial risk distribution of West Nile virus disease in birds and humans in southern Ontario from 2002 to 2005
<p>Abstract</p> <p>Background</p> <p>The West Nile virus (WNv) became a veterinary public health concern in southern Ontario in 2001 and has continued to threaten public health. Wild bird mortality has been shown to be an indicator for tracking the geographic distribution of the WNv. The purpose of this study was to investigate the latent risk distribution of WNv disease among dead birds and humans in southern Ontario and to compare the spatial risk patterns for the period 2002–2005. The relationship between the mortality fraction in birds and incidence rate in humans was also investigated.</p> <p>Methods</p> <p>Choropleth maps were created to investigate the spatial variation in bird and human WNv risk for the public health units of southern Ontario. The data were smoothed by empirical Bayesian estimation before being mapped. Isopleth risk maps for both the bird and human data were created to identify high risk areas and to investigate the potential relationship between the WNv mortality fraction in birds and incidence rates in humans. This was carried out by the geostatistical prediction method of kriging. A Poisson regression analysis was used to model regional human WNv case counts as a function of the spatial coordinates in the east and north direction and the regional bird mortality fractions. The presence of disease clustering and the location of disease clusters were investigated by the spatial scan test.</p> <p>Results</p> <p>The isopleth risk maps exhibited high risk areas that were relatively constant from year to year. There was an overlap in the bird and human high risk areas, which occurred in the central-west and south-west areas of southern Ontario. The annual WNv cause-specific mortality fractions in birds for 2002 to 2005 were 31.9, 22.0, 19.2 and 25.2 positive birds per 100 birds tested, respectively. The annual human WNv incidence rates for 2002 to 2005 were 2.21, 0.76, 0.13 and 2.10 human cases per 100,000 population, respectively. The relative risk of human WNv disease was 0.72 times lower for a public health unit that was 100 km north of another public health unit. The relative risk of human WNv disease increased by the factor 1.44 with every 10 positive birds per 100 tested. The scan statistic detected disease cluster in the bird and human data. The human clusters were not significant, when the analysis was conditioned on the bird data.</p> <p>Conclusion</p> <p>The study indicates a significant relationship between the spatial pattern of WNv risk in humans and birds.</p
Implications of Behavioral Architecture for the Evolution of Self-Organized Division of Labor
Division of labor has been studied separately from a proximate self-organization and an ultimate evolutionary perspective. We aim to bring together these two perspectives. So far this has been done by choosing a behavioral mechanism a priori and considering the evolution of the properties of this mechanism. Here we use artificial neural networks to allow for a more open architecture. We study whether emergent division of labor can evolve in two different network architectures; a simple feedforward network, and a more complex network that includes the possibility of self-feedback from previous experiences. We focus on two aspects of division of labor; worker specialization and the ratio of work performed for each task. Colony fitness is maximized by both reducing idleness and achieving a predefined optimal work ratio. Our results indicate that architectural constraints play an important role for the outcome of evolution. With the simplest network, only genetically determined specialization is possible. This imposes several limitations on worker specialization. Moreover, in order to minimize idleness, networks evolve a biased work ratio, even when an unbiased work ratio would be optimal. By adding self-feedback to the network we increase the network's flexibility and worker specialization evolves under a wider parameter range. Optimal work ratios are more easily achieved with the self-feedback network, but still provide a challenge when combined with worker specialization
Significance of Input Correlations in Striatal Function
The striatum is the main input station of the basal ganglia and is strongly associated with motor and cognitive functions. Anatomical evidence suggests that individual striatal neurons are unlikely to share their inputs from the cortex. Using a biologically realistic large-scale network model of striatum and cortico-striatal projections, we provide a functional interpretation of the special anatomical structure of these projections. Specifically, we show that weak pairwise correlation within the pool of inputs to individual striatal neurons enhances the saliency of signal representation in the striatum. By contrast, correlations among the input pools of different striatal neurons render the signal representation less distinct from background activity. We suggest that for the network architecture of the striatum, there is a preferred cortico-striatal input configuration for optimal signal representation. It is further enhanced by the low-rate asynchronous background activity in striatum, supported by the balance between feedforward and feedback inhibitions in the striatal network. Thus, an appropriate combination of rates and correlations in the striatal input sets the stage for action selection presumably implemented in the basal ganglia
- …