35,863 research outputs found
Sputtering yield measurements at glancing incidence using a quartz crystal microbalance
Low energy sputtering yields at grazing incidence have been investigated experimentally using a quartz crystal microbalance (QCM) technique. This method involved precoating the QCM with a thin film of the desired target material and relating the resonance frequency shift directly to mass loss during ion bombardment. A highly focused, low divergence ion beam provided a well defined incidence angle. Focusing most of the ion current on the center of the target allowed for higher sensitivity by taking into account the radial mass sensitivity of the QCM. Measurements of Mo, Cu, and W sputtering yields were taken for low energy (80–1000 eV) Xe+ and Ar+ to validate this experimental method. The target films ranged from 3.5 to 8.0 µm in thickness and were deposited so that their crystal structure and density would match those of the bulk material as closely as possible. These properties were characterized using a combination of scanning electron microscope imagery, profilometry, and x-ray diffraction. At normal incidence, the sputtering yields demonstrated satisfactory agreement with previously published work. At angles of incidence up to 40° off normal, the data agreed well with predictions from existing theoretical models. Sputtering yields were found to increase by a factor of 1.6 over this range. The optimum angle for sputtering occurred at 55°, after which the yields rapidly decreased. Measurements were taken up to 80° from the surface normal
Diode laser 87Rb optical pumping in an evacuated wall-coated cell
The evacuated wall coated sealed cell coupled with diode laser optical pumping offers a number of attractive potential advantages for use in Rb or Cs atomic frequency standards. An investigation of systematic effects is required to explore possible limitations of the technique. The use of diode laser optical pumping of 87 Rb in an evacuated wall coated sealed cell is presented. Experimental results/discussion to be presented include the signal strength and line broadening of the 0 - 0 hyperfine resonance as a function of light intensity for the D1 optical transitions (F - F prime) - (2 1 prime) and (2 - 2 prime), shift of the 0 - 0 hyperfine frequency as a function of laser intensity and de-tuning from optical resonance, and diode laser frequency stabilization techniques
Biochemical Properties of a Decoy Oligodeoxynucleotide Inhibitor of STAT3 Transcription Factor.
Cyclic STAT3 decoy (CS3D) is a second-generation, double-stranded oligodeoxynucleotide (ODN) that mimics a genomic response element for signal transducer and activator of transcription 3 (STAT3), an oncogenic transcription factor. CS3D competitively inhibits STAT3 binding to target gene promoters, resulting in decreased expression of proteins that promote cellular proliferation and survival. Previous studies have demonstrated antitumor activity of CS3D in preclinical models of solid tumors. However, prior to entering human clinical trials, the efficiency of generating the CS3D molecule and its stability in biological fluids should be determined. CS3D is synthesized as a single-stranded ODN and must have its free ends ligated to generate the final cyclic form. In this study, we report a ligation efficiency of nearly 95 percent. The ligated CS3D demonstrated a half-life of 7.9 h in human serum, indicating adequate stability for intravenous delivery. These results provide requisite biochemical characterization of CS3D that will inform upcoming clinical trials
STATISTICAL ANALYSIS SOFTWARE FOR MULTIPLICATIVE INTERACTION MODELS
In a two-way cross-classified experiment, one is almost always interested in whether the two factors interact or not. When there are no independent replications, there are no traditional tests for interaction. This research considers the problem of analyzing a two-way cross-classified experiment using multiplicative interaction models when there are no independent replications and interaction between the two factors may exist. The purpose of this research is to develop SAS® macros to provide user-friendly statistical software for the analysis of interaction in two-way experiments. The macros also provide many useful graphical displays including displays to help one determine the pattern of interaction when a pattern exists and to help one interpret the results of the analyses
Pseudo-binary phase diagram for Zr-based in situ ß phase composites
The pseudo-binary (quasi-equilibrium) phase diagram for Zr-based bulk metallic glasses with crystalline in situ precipitates (ß phase) has been constructed from high-temperature phase information and chemical composition analysis. The phase evolution was detected in situ by high-energy synchrotron x-ray diffraction followed by Rietveld analysis of the data for volume fraction estimation. The phase diagram delineates phase fields and allows the control of phase fractions. Combined with related previous work by the authors, this diagram offers a unique opportunity to control both the morphology and volume of the dendritic ß phase precipitates to enhance the properties of the composites
Wavelength- and material-dependent absorption in GaAs and AlGaAs microcavities
The quality factors of modes in nearly identical GaAs and
Al_{0.18}Ga_{0.82}As microdisks are tracked over three wavelength ranges
centered at 980 nm, 1460 nm, and 1600 nm, with quality factors measured as high
as 6.62x10^5 in the 1600-nm band. After accounting for surface scattering, the
remaining loss is due to sub-bandgap absorption in the bulk and on the
surfaces. We observe the absorption is, on average, 80 percent greater in
AlGaAs than in GaAs and in both materials is 540 percent higher at 980 nm than
at 1600nm.Comment: 4 pages, 2 figures, 1 table, minor changes to disucssion of Qrad and
Urbach tai
Link-space formalism for network analysis
We introduce the link-space formalism for analyzing network models with
degree-degree correlations. The formalism is based on a statistical description
of the fraction of links l_{i,j} connecting nodes of degrees i and j. To
demonstrate its use, we apply the framework to some pedagogical network models,
namely, random-attachment, Barabasi-Albert preferential attachment and the
classical Erdos and Renyi random graph. For these three models the link-space
matrix can be solved analytically. We apply the formalism to a simple
one-parameter growing network model whose numerical solution exemplifies the
effect of degree-degree correlations for the resulting degree distribution. We
also employ the formalism to derive the degree distributions of two very simple
network decay models, more specifically, that of random link deletion and
random node deletion. The formalism allows detailed analysis of the
correlations within networks and we also employ it to derive the form of a
perfectly non-assortative network for arbitrary degree distribution.Comment: This updated version has been expanded to include a number of new
results. 19 pages, 11 figures. Minor Typos correcte
Metformin as a Therapeutic Target in Endometrial Cancers.
Endometrial cancer is the most common gynecologic malignancy in developed countries. Its increasing incidence is thought to be related in part to the rise of metabolic syndrome, which has been shown to be a risk factor for the development of hyperestrogenic and hyperinsulinemic states. This has consequently lead to an increase in other hormone-responsive cancers as well e.g., breast and ovarian cancer. The correlation between obesity, hyperglycemia, and endometrial cancer has highlighted the important role of metabolism in cancer establishment and persistence. Tumor-mediated reprogramming of the microenvironment and macroenvironment can range from induction of cytokines and growth factors to stimulation of surrounding stromal cells to produce energy-rich catabolites, fueling the growth, and survival of cancer cells. Such mechanisms raise the prospect of the metabolic microenvironment itself as a viable target for treatment of malignancies. Metformin is a biguanide drug that is a first-line treatment for type 2 diabetes that has beneficial effects on various markers of the metabolic syndrome. Many studies suggest that metformin shows potential as an adjuvant treatment for uterine and other cancers. Here, we review the evidence for metformin as a treatment for cancers of the endometrium. We discuss the available clinical data and the molecular mechanisms by which it may exert its effects, with a focus on how it may alter the tumor microenvironment. The pleiotropic effects of metformin on cellular energy production and usage as well as intercellular and hormone-based interactions make it a promising candidate for reprogramming of the cancer ecosystem. This, along with other treatments aimed at targeting tumor metabolic pathways, may lead to novel treatment strategies for endometrial cancer
Rice genotype differences in tolerance of zinc-deficient soils: evidence for the importance of root-induced changes in the rhizosphere
The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fpls.2015.01160Zinc (Zn) deficiency is a major constraint to rice production and Zn is also often deficient in humans with rice-based diets. Efforts to breed more Zn-efficient rice are constrained by poor understanding of the mechanisms of tolerance to deficiency. Here we assess the contributions of root growth and root Zn uptake efficiency, and we seek to explain the results in terms of specific mechanisms. We made a field experiment in a highly Zn-deficient rice soil in the Philippines with deficiency-tolerant and -sensitive genotypes, and measured growth, Zn uptake and root development. We also measured the effect of planting density. Tolerant genotypes produced more crown roots per plant and had greater uptake rates per unit root surface area; the latter was at least as important as root number to overall tolerance. Tolerant and sensitive genotypes took up more Zn per plant at greater planting densities. The greater uptake per unit root surface area, and the planting density effect can only be explained by root-induced changes in the rhizosphere, either solubilizing Zn, or neutralizing a toxin that impedes Zn uptake (possibly HCO − 3
HCO3− or Fe2+), or both. Traits for these and crown root number are potential breeding targets.This research was funded by a grant from the UK's Biotechnology and Biological Sciences Research Council (BBSRC, Grant Ref. BB/J011584/1) under the Sustainable Crop Production Research for International Development (SCPRID) programme, a joint multi-national initiative of BBSRC, the UK Government's Department for International Development (DFID) and (through a grant awarded to BBSRC) the Bill & Melinda Gates Foundation. Support to AKN in the form of a fellowship awarded by the Japan Society for the Promotion of Science (JSPS) is gratefully acknowledged
- …