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STATISTICAL ANALYSIS SOFTWARE FOR MULTIPLICATIVE INTERACTION MODELS 
 

Eun-Joo Lee 
Advanced Micro Devices Inc., Sunnyvale, CA 94088-3453 

and 
Dallas E. Johnson 

Kansas State University, Manhattan, KS 66506-0802 
 

  In a two-way cross-classified experiment, one is almost always interested in whether the two 
factors interact or not. When there are no independent replications, there are no traditional tests for 
interaction. This research considers the problem of analyzing a two-way cross-classified experiment 
using multiplicative interaction models when there are no independent replications and interaction 
between the two factors may exist. The purpose of this research is to develop SAS® macros to provide 
user-friendly statistical software for the analysis of interaction in two-way experiments. The macros 
also provide many useful graphical displays including displays to help one determine the pattern of 
interaction when a pattern exists and to help one interpret the results of the analyses. 
 
KEYWORDS: Two-Way experiments, AMMI, Genotype-by-Environmental interaction. 

 
1  INTRODUCTION 

 
 In a two-way cross-classified experiment, one is almost always interested in whether the two factors 
interact or not. When there are no independent replications, there are no traditional tests for interaction. 
This research considers the problem of analyzing a two-way cross-classified experiment when there are 
no independent replications and interaction between the two factors may exist. 
 There are some experiments that are impossible to replicate because of their own attributes. In 
examining human genotype-by-environmental interaction in an analysis of individual differences in 
human populations, one can only assess the performance of any given array of human genotypes within a 
single culture, at a single point in time. Also, genotype-by-environmental interactions can occur when 
various plant genotypes are grown across diverse environments as in a plant breeding study, but it is not 
possible to replicate environments, such as specific years and/or specific locations, in this kind of an 
experiment. The additive nature of the ordinary ANOVA technique allows us to describe main effects, but 
the interaction between genotypes and environments is completely confounded with the experimental 
error since the residuals from an additive model contain information about both interaction and the 
experimental error. If interaction exists only in a part of a two-way cross-classified layout and one can 
determine the pattern of interaction, then it would be possible to partition the residual sum of squares 
from the additive model into a portion that is free from interaction (i.e. estimates the experimental error 
variance) and a portion that estimates interaction effects. 
 Rating scales are one of the most popular judgmental measures used by one group of individuals to 
judge one or more aspects of other individuals, such as job performance appraisal, personnel selection 
based on interviews, teachers' ratings of their students' behavior, and judges' ratings of participants in 
events like figure skating, diving, and gymnastics in Olympic games. Rating scales are widely used in 
business, behavioral science, and sports as a useful assessment technique. One can view the data from the 
above situations as two-way cross-classified experiments without replication. 
 Many experiments are very expensive to conduct so that researchers are often forced to limit the 
number of treatment combinations that can be studied in order to be able to replicate the treatment 
combinations so as to get an independent estimate of the experimental error variance. If the major 
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objective of the experiment is exploratory rather than confirmatory, it may be more desirable to study 
many different treatment combinations, each performed once, rather than a few treatment combinations 
each replicated many times. 
 Clearly, there exist needs to analyze data from these types of experiments and methods based on 
multiplicative interaction models to solve these kinds of problems have been proposed during the last few 
decades. However, using these methods requires complex matrix calculation and no generalized software 
is readily available to experimenters to make use of these methods easily. Currently, the models are usable 
only by a small number of researchers who can write their own programs using SAS/IML®, S-PLUS®, or 
MATLAB® for each analysis. The purpose of the research described in this paper is to develop SAS® 
macros that will provide user-friendly statistical software for the analysis of interaction in two-way 
nonreplicated experiments. In addition to performing the complex calculations required to fit 
multiplicative interaction models, the software provides many useful graphical displays that will enable 
large numbers of researchers to easily interpret the results of their statistical analyses. The macros also 
output the analyses in a user-friendly format. 
 

2  ANALYSES OF TWO-WAY NONREPLICATED EXPERIMENTS 
 
 The AMMI (Additive Main-effects and Multiplicative Interaction) models allow one to analyze two-
way data with interaction along with a traditional additive main effects framework even if there are no 
independent replications. Multiplicative interaction models are non-traditional nonlinear models that 
allow one to analyze many nonreplicated experiments. Gollob (1968) and Mandel (1969) independently 
considered a multiplicative interaction model of the form 
 

1 1 1 2 2 2ij i j i j i j k ki kj ijy µ τ β λα γ λ α γ λ α γ ε+= + + + + + +L ,   1, 2, ,i t= L ; 1,2, ,j b= L  (2.1) 
 
for some 1k b≤ −  where it is assumed that ijε ~ i.i.d. 2(0, )N σ  and, without loss of generality, that b t≤ . 
The following restrictions are imposed on the parameters without any loss of generality: 
 
   0i j

i j
τ β= =∑ ∑ ,  1 2 kλ λ λ≥ ≥ ≥L , 

   0ri rj
i j
α γ= =∑ ∑  for 1,2, ,r k= L , 

   2 2 1ri rj
i j
α γ= =∑ ∑  for 1,2, ,r k= L , and 

   ' ' 0ri r i rj r j
i j
α α γ γ= =∑ ∑  for ' 1, 2, ,r r k≠ = L . 

 
The above assumptions are made only to provide parameter identifiability in model (2.1). Gollob assumed 
a replicated experiment and, thus had an independent estimate of the error variance, whereas Mandel 
assumed one observation per treatment combination. The main difference between Gollob's and Mandel's 
approach is the number of degrees of freedom that are assigned to each of the multiplicative interaction 
terms. 
 Tukey (1949) was the first to propose a test for interaction in the two-way treatment structure 
experiment with one observation per treatment combination. Tukey did not specify any particular form of 
interaction in the model when he proposed the test. Hegemann and Johnson (1976) showed that his test 
has relatively good power when the interaction term is a scalar multiple of the product of the two main 
effects, i.e., when 
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  ij i j i j ijy µ τ β λτ β ε+= + + + ,   1, 2, ,i t= L ; 1,2, ,j b= L . (2.2) 
 
Model (2.2) is called Tukey's model and it is a special case of (2.1) with 1k = , i i iα τ= ∀ , and 

 j j jγ β= ∀ . A test for interaction is made by testing 0 : 0H λ =  vs : 0AH λ ≠  in model (2.2). See 
Graybill (2000) for proofs. If one fails to reject 0H , then there is no interaction of the form i jλτ β , but 
this does not rule out existence of other forms of interaction. In addition, Hegemann and Johnson (1976) 
showed that Tukey's test is not an unbiased test, i.e., the probability of rejecting 0 : 0H λ =  when 
interaction exists could be less than the probability of rejecting when there is no interaction. 
 Mandel (1961) generalized Tukey's model to 
 
  ij i j i j ijy µ τ β α β ε+= + + + ,   1, 2, ,i t= L ; 1,2, ,j b= L . (2.3) 
 
Model (2.3) is a special case of (2.1) when 1k =  and j j jλγ β= ∀  and Tukey's model (2.2) is a special 
case of (2.3) when  i i iα λτ= ∀ . Mandel's model is often called a 'bundle-of-straight-lines' model because 
an alternative form of model (2.3) is (1 )ij i i j ijy µ τ α β ε+= + + +  and ijy  is a linear function of jβ  for 
each value of i  with a different slope parameter (1 )iα+  for each line. Both Tukey's and Mandel's 
models are special cases of the multiplicative interaction model. Mandel's model reduces to an additive 
model if 1 2 tα α α= = =L , therefore a test for interaction can be obtained by testing 0 1 2: tH α α α= = =L . 
See Mandel (1961) for proofs. Again, if 0H  is not rejected, one can only say that there is likely no 
interaction of the form given by Mandel's model. Another form of Mandel's model is 

ij i j i j ijy µ τ β τ γ ε+= + + + , 1, 2, ,i t= L ; 1,2, ,j b= L . In this model a test for interaction is made by testing 
0 1 2: bH γ γ γ= = =L . 

 When an experimenter wishes to use a multiplicative interaction model, it is necessary to determine 
how many multiplicative interaction terms are required to adequately model the data. It is desirable to 
choose a model having as few terms as possible while adequately modeling the two-way data. 
Yochmowitz and Cornell (1978) gave a stepwise procedure for determining the number of terms 
necessary to explain the interaction. However, Milliken and Johnson (1989) noted that "... in real data 
situations, an experiment requiring more than two terms has never been encountered, and in most cases 
only one term has been required." 
 
2.1  Type I and Type II Interaction Plots 
 
 Two different types of interaction plots called a Type I interaction plot and a Type II interaction plot 
for a set of two-way cell mean parameters are illustrated by Milliken and Johnson (1989). A Type I 
interaction plot is constructed by plotting ijµ  against i  (or j ), for each possibility of the other 
treatment factor, jB  (or iT ). A Type II interaction plot is constructed by plotting ijµ  against the main-
effect parameters of one treatment factor, iτ  (or jβ ), for each possibility of the other treatment factor, 

jB  (or iT ). Four different models, an additive two-way model, Tukey's model, Mandel's bundle-of-
straight-lines model, and the AMMI model, are considered by the SAS® macros developed in this 
research and each is examined through Type I and Type II interaction plots in this section. The Type II 
plots given in this Section take . ..i iτ µ µ= − , 1,  2,  3,  4i = . 
 When the cell mean parameters are from an additive two-way model, a Type I interaction plot always 
consists of line segments which are parallel to one another and a Type II interaction plot always consists 
of parallel lines rather than parallel line segments. Figure 1 shows a Type I and Type II interaction plot for 
cell mean parameters from an additive model. 
 Figure 2 shows a set of cell mean parameters satisfying Tukey's model (2.2) and their Type I and Type 
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II interaction plots. An examination of Type I interaction plot reveals little more other than the two factors 
interact. However, the Type II interaction plot from Tukey's model reveals a plot consisting of several 
straight lines all intersecting in a single point. This always holds for data that can be modeled exactly by 
Tukey's model. 
 Figure 3 shows a set of cell mean parameters satisfying Mandel's model (2.3) and Type I and Type II 
interaction plots for these cell means. Again, an examination of the Type I interaction plot does not 
provide much information other than these cell mean parameters are from a nonadditive model. The Type 
II interaction plot is much more informative when the cell means are from Mandel's model. An 
examination of the Type II interaction plot in Figure 3 suggests that ijµ  is a linear function of îτ  for 
each level of jB  with a different slope parameter for each line. This is why Mandel's model is called a 
'bundle-of-straight-lines' model. 
 For data that can be modeled by Tukey's model, it does not matter whether the ijµ 's are plotted against 

iτ  or plotted against jβ . In either case, the resulting Type II interaction plot consists of straight lines that 
intersect in a single point. However, for data that can be modeled by Mandel's model, the fact that ijµ  
can be expressed as a linear function of îτ  for each level of jB  as shown in Figure 3 does not guarantee 
that ijµ  can also be expressed as a linear function of ˆ

jβ  for each level of iT . An appropriate form of 
the model should be carefully chosen when selecting one of Mandel's models. 
 The cell means given in Figure 4 are obtained from an AMMI model (2.1) with one interaction term 
by letting 29µ = , [ ]-10   4   -2   8′ =τ , [ ]-5   2   4   0   -1′ =β , 354.9648λ = , ′ =α  [ ]0  -.267  -.535  .802  0 , 
and [ ].632  -.316  .316  -.632′ =γ . The Type I and Type II interaction plots for these cell means are also 
given in Figure 4. Neither the Type I nor Type II interaction plot reveals any interesting characteristics of 
the cell means in this case. 
 
2.2  Maximum Likelihood Estimators 
 
 Johnson and Graybill (1972) obtained the maximum likelihood estimators of the parameters in model 
(2.1) when 1k = . The maximum likelihood estimators of the parameters in model (2.1) are 
 
   ..ˆ yµ = ; 
   . ..î iy yτ = − , 1,  2, ,  i t= L ; 
   . ..

ˆ
j jy yβ = − , 1,  2, ,  j b= L ; 

   2
r̂ rlλ = , 1,  2, ,  r k= L ; 

   

2

12

k

ij r
ij r

z l

tb
σ =

−
=
∑ ∑

%  

 
where 1 2 1 1k k bl l l l l+ −> > > > > >L L are the non-zero characteristic roots of TZ Z  or TZZ , where 

( )ijz=Z  and . . ..ij ij i jz y y y y= − − + , ˆ rα  is the normalized characteristic vector of TZZ  corresponding to 
the characteristic root, rl , 1,2, ,r k= L , and ˆ rγ  is the normalized characteristic vector of TZ Z  
corresponding to the characteristic root, rl , 1,2, ,r k= L . The proper sign for r̂λ  is obtained by taking 
ˆ ˆ ˆ T
r r rλ = α Z γ , 1,2, ,r k= L . The maximum likelihood estimator 2σ%  is not an unbiased estimate of 2σ . An 

estimator of 2σ  that is less biased is 
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2

12

1
( 1)( 1)

k

ij r
ij r

k

r
r

z l

t b
σ

ν

=

=

−
=

− − −

∑ ∑

∑
%  (2.5) 

 
where 

1 2

2
0[ ]

rr rE lλ λ λν σ= = = == L . 
 Milliken and Johnson (1989) showed that an examination of the interaction parameter estimates 
reveals information about the nature of the interaction in a set of two-way means. Suppose that the values 
of some of the ˆriα 's in model (2.1) are nearly equal for 1,2, ,r k= L . This suggests that the corresponding 
rows do not interact with the column treatments. Similarly, when values of some of the ˆrjγ 's are nearly 
equal for 1,2, ,r k= L , then the corresponding columns do not likely interact with the row treatments. 
This situation is easy to see when 1k = , and may be easy to see when 2k = . When 2k > , it is still worth 
considering, although it may be hard to determine the nature of the interaction in such cases. 
 
2.3  Testing Interaction Hypotheses 
 
 Mandel (1969) proposed an approximate size α  test for interaction in the AMMI model when 1k =  
as reject 0 1: 0H λ =  in favor of 1: 0AH λ ≠  if 
 

  
1 1

* 1 1
, ,( 1)( 1)2ˆ t b

l
F Fα ν ν

ν
σ − − −= >  

 
where 

1

2
1 0 1[ ]E lλν σ== . That is, Mandel suggested that 2

1l σ  is approximately 2
1( )χ ν  if 0 1: 0H λ =  is 

true, 2 2ˆ( 1)( 1)t b σ σ− −  is approximately 2
1(( 1)( 1) )t bχ ν− − − , and that 1l  and 2σ̂  are approximately 

independent. Thus, * 2
1 1 ˆ( )F l ν σ=  is approximately 1 1( , ( 1)( 1) )F t bν ν− − −  if 0 1: 0H λ =  is true. 

Mandel's test statistic was shown to be a likelihood ratio test statistic for testing 0 1: 0H λ =  by Johnson 
and Graybill (1972). The SAS® macros developed in this paper simulate values for 1ν  for various 
choices of t  and b . 
 In the case where 1k > , Mandel (1969) proposed an ANOVA table of the form in Table 1. To test 

0 1 2: 0, 0, 0, ,rH λ λ λ= ≠ ≠ L  1 0rλ − ≠  vs 1 2 1: 0, 0, 0, , 0A r rH λ λ λ λ −≠ ≠ ≠ ≠L , one uses 
 

  *

1 1
2

1 1
( 1)( 1)

r r
r r r

ij i i
ij i i

l
F

z l t b

ν

ν
− −

= =

=
⎛ ⎞ ⎛ ⎞− − − −⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
∑ ∑ ∑

 

 
and one rejects 0H  at the 100%α ×  significance level if 1

1

*

, ,( 1)( 1)
r

r i
i

r
t b

F F
α ν ν

−

=
− − −∑

> . The SAS® macros 

produced simulated values of 1 2, , , kν ν νL  and an ANOVA table similar to Table 1 except that all F-values 

and p-values are based on 2σ̂  in (2.5) with degrees of freedom 
1

1
( 1)( 1)

r

i
i

t b ν
−

=
− − − ∑ . 

 If two treatments interact, experimenters also want to know where the interaction exists in the data. 
Marasinghe and Johnson (1982) derived a likelihood ratio statistic for testing 0 :H =Hα 0  and =Gγ 0  
vs 0 :H ≠Hα 0  or ≠Gγ 0 , where H  is any p t×  matrix of rank p  whose rows are contrasts and G  
is any q b×  matrix of rank q  whose rows are contrasts when 1k =  in model (2.1). The test statistic is 
given by 
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2
1

2 **
1

ij
ij

ij
ij

z l

z l

−
Λ =

−

∑

∑
 

 
where **

1l  is the largest characteristic root of 
 
 1 1 1( ) ( ) ( )T T T T T T T− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦I H HH H Z I G GG G Z I H HH H . 
 
The hypothesis 0 :H =Hα 0  and =Gγ 0  is rejected for small values of Λ  and the null distribution of 
Λ  depends on b , t , p , q , and 1δ λ σ= . This test can be used to test for the equality of subsets of 
the α 's and the γ 's individually or simultaneously which implies that the corresponding sub-tables in 
the data are additive. Hence, the test can be used to identify such sub-tables. If there is no significant 
interaction within selected sub-tables of the data, then the experimenter may use this information to obtain 
a more reliable estimate of the experimental error variance. 
 Johnson and Graybill (1972) showed that the non-zero characteristic roots of TZ Z  are distributed as 
the characteristic roots of a noncentral Wishart matrix ( )2

1~  1, ,bW t σ− −W I M  where T T=M K Γ ΓK , 
1 1 1i jλα γ⎡ ⎤= ⎣ ⎦Γ , and K  is any ( 1)b b× −  matrix satisfying ( )1T

b bb= −KK I J  and 1
T

b−=K K I . For the 
case when 3b = , Johnson (1974) found the mean and variance of the characteristic roots of a noncentral 
Wishart matrix. Other than this special case, the moments of the characteristic roots of a Wishart matrix 
are not explicitly known. 
 

3  AMMI MACROS FOR ANALYZING MULTIPLICATIVE INTERACTION MODELS 
 
 This section introduces SAS® macros to help analyze two-way cross-classified experiments with no 
independent replications developed under the SAS® system release 8.2 (TS2MO) on a windows 
environment. This developed set of macros is called the AMMI macros. The AMMI macros consist of six 
independently executable macros and 22 sub-macros that are called by the six main macros. The AMMI 
macros provide three stages of analytic tools; pre-analysis for diagnosing interaction, model fitting for 
selecting a suitable model, and testing interaction contrasts for finding patterns of interaction in the data. 
 All plots produced by the AMMI macros are generated in an Adobe® Portable Document Format 
(PDF) file before they are shown in the SAS® graph window. Each page of a PDF file may be exported to 
another type of image file using Adobe® Acrobat®. Exporting graphic output as image files with Adobe® 
Acrobat® gives high quality graphs needed for publication purposes. Most of the SAS® graphic output 
loses its original quality when exported to other types of image files. The PDF graphic output has the 
unique property that one gets the same quality of graphic output as seen in the SAS® graph window. The 
following sections explain the methods employed to build the AMMI macros by their functions. 
 
3.1  Pre-analysis 
 
 The macro %PreviewAMMI is designed to explore and diagnose interactions between the two factors. 
After a data set is ready for analysis, the user has options to display the data graphically for diagnostic 
purposes. Type I interaction plots and Type II interaction plots for a set of two-way cell responses as 
described in Milliken and Johnson (1989) are available. Another way to think about the AMMI model is 
that it provides a singular value decomposition of the matrix of residuals, or equivalently, it provides a 
principal component analysis of the matrix TZ Z  and/or TZZ . Thus, one method that can be used to 
guide one in the choice of the number of interaction terms is a scree plot of the characteristic roots of 
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TZ Z  and/or TZZ . A scree plot plots the values of the characteristic roots against the order of the 
characteristic roots. That is, one plots the pairs ( ) ( )1 2 11, , 2, , , ( 1, )bl l b l −−L . When the points on the graph 
tend to level off, these characteristic roots are usually close enough to zero that the corresponding 
multiplicative interaction terms can be ignored. The %PreviewAMMI macro provides a scree plot of the 
non-zero characteristic roots of the matrix TZ Z  and/or TZZ  where Z  is the residual matrix obtained 
after fitting an additive model to the two-way data. This helps to determine the number of multiplicative 
interaction terms required to adequately model the data. In addition to diagnostic graphics, a table of all 
2 2×  interaction contrasts calculated from all possible pairwise row and pairwise column contrasts is 
provided to help one identify the pattern of interaction, should a pattern exist. 
 
3.2  Fitting Models 
 
 The macro %FitAMMImodel is designed to fit two-way data in one or more of several different 
models. Four different models can be fitted, individually or simultaneously; these are an additive model, 
Tukey's model, Mandel's bundle-of-straight- lines models, and an AMMI model. When Tukey's or 
Mandel's model is chosen, a fitted line plot with data points will be provided along with ANOVA tables. 
As shown in Section 2, Tukey's model can be viewed as a special case of Mandel's model when the lines 
intersect in a common point. The sum of squares for Mandel's interaction term can be divided into two 
parts; the sum of squares for Tukey's interaction term and the remainder. When the remainder is small 
then Mandel's model provides no better fit to the data than that given by Tukey's model. In this case, one 
says that lines are 'concurrent'. That is, the lines intersect in a single point. When a Mandel's model is 
chosen for fitting, a test for concurrency is provided prior to fitting Mandel's model. The test for 
concurrency is a test that the lines intersect in a common point. Additional functions of the AMMI macros 
related to Tukey's and Mandel's models are discussed later. After fitting each model, an output dataset is 
created with predicted values and residuals appended to the original input data. 
 Pseudo F-tests are provided for each multiplicative interaction term in the AMMI models as illustrated 
by Table 1. When an AMMI model is fit, the expected values of the characteristic roots of TZ Z  are 
required for different values of t  and b  in order to conduct statistical tests on the multiplicative 
interaction terms. The exact moments of the characteristic roots are known for the case when 3b = . See 
Johnson (1974) for details. When 3b > , the expected values of the characteristic roots are simulated by 
the macro %FitAMMImodel to assign degrees of freedom to each of the multiplicative interaction terms. 
Estimates of the moments of the characteristic roots of TZ Z  are obtained by generating 999 random 
matrices having a central Wishart distribution with covariance matrix equal to the identity matrix and 
calculating the characteristic roots of each. The expected value of the sum of the characteristic roots is 
( 1)( 1)t b− −  since ( ) ( )1 2 1 ( 1)( 1)bE l l l E RSS t b−+ + + = = − −L . The sum of the empirical moments of the 
characteristic roots of TZ Z  is not equal to ( 1)( 1)t b− − . When the expected values are overestimated, the 
sum of simulated moments is generally greater than ( 1)( 1)t b− − . Similarly, when the expected values are 
underestimated, the sum of simulated moments is generally less than ( 1)( 1)t b− − . Consequently, a bias 
correction is made by multiplying each simulated moment by ( 1)( 1)t b− −  and then dividing by the mean 
of the 999 residual sums of squares of the simulated moments from an additive model. Whether the 
original estimates are biased upwards or downwards, estimates become less biased after the bias 
correction. 
 A previously simulated set of estimates for 

1 2 1 0[ ]
b iE lλ λ λ −= = = =L , 1,2, , 1i b= −L  is provided as a SAS® 

dataset named AMMI.EX_L with the AMMI macros. The dataset AMMI.EX_L is referenced, updated, 
and expanded by the macro %FitAMMImodel to assign degrees of freedom to each of the multiplicative 
interaction terms in AMMI models. When an AMMI model is chosen, one can specify the number of 
multiplicative interaction terms required to adequately model the data. There are four options to choose 
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the method to calculate a set of degrees of freedom associated with multiplicative interaction terms: (1) 
find a set of values from a previously simulated table, (2) run a simulation to get a set of degrees of 
freedom for the case under considerations, (3) run a simulation and store the simulated values in the table 
described in (1), or (4) use Gollob's method, which assigns ( 1 2 )b t m+ − −  degrees of freedom to the m -
th multiplicative interaction term. This paper recommends that analysts use simulated moments as 
Gollob's method gives highly biased estimates of the degrees of freedom associated with each interaction 
term. 
 
3.3  Testing Interaction Contrasts 
 
 Once it has been determined, that there is interaction in the data, one may want to find combinations 
of the two factors that are responsible for the interaction and to know whether a few selected treatment 
combinations are responsible for all or most of the interaction in the two-way data. 
 The macro %IC2by2T is designed to test all 2 2×  interaction contrasts calculated from all possible 
pairwise row and pairwise column contrasts and based on a given error variance along with its 
corresponding degrees of freedom. This is a model-free method to check if certain combinations of 
treatment effects are not responsible for the interaction. This module is built to provide tests based on 
information from the selected model in addition to calculating all 2 2×  interaction contrasts provided by 
the macro %PreviewAMMI. This %IC2by2T macro should only be used after one has determined that 
interaction is present in the data by the %FitAMMImodel macro, in order to provide some control over 
the experimentwise multiple comparison error rate. 
 The macro %ContrastAMMI is designed to test user specified interaction contrasts in the AMMI 
model with only one interaction term. Users are able to specify interaction contrasts of the form =Hα 0  
and/or =Gγ 0  as described in Section 2.3. For specified contrast matrices, H  and G , a simulated p-
value and two simulated critical points, 90% and 95%, are provided with the test statistic. The built-in 
simulation module generates 4999 random matrices to calculate Λ  which is defined in Section 2.3. The 
simulation method can be viewed as a parametric bootstrap technique providing a simulated null 
distribution of Λ  corresponding to the values of b , t , p , q , and 1δ λ σ= . 
 
3.4  Least Squares Means 
 
 Least squares means for Tukey's model when τ̂  is equal to some known value τ  when viewed as 
regressing on the τ̂ 's are defined as 
 
   ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ (1 )j j j j jLSM µ τ β λτβ µ β λβ τ= + + + = + + + , 1,2, ,j b= L . 
 
The macro %LSMTukey is designed to calculate least squares means for Tukey's model at a specified 
location along the factor 1 axis. 
 Least squares means for Mandel's model when τ̂  is equal to some known value τ  when viewed as 
regressing on the τ̂ 's are defined as 
 
   ˆ ˆˆ ˆ ˆ ˆ(1 )j j j j jLSM µ τ β τγ µ β γ τ= + + + = + + + , 1,2, ,j b= L . 
 
and an approximate standard error of each of the least squares means at τ  is given by 
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Approximate studentized t-statistics to compare two least squares means from Mandel's model when 
τ̂ τ=  are given by 
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The macro %LSMandel is designed to calculate and compare least squares means for Mandel's bundle-of-
straight-lines model at a specified location along the factor 1 (factor 2) axis. 
 

4  EXAMPLES 
 
 To illustrate results from the AMMI macros, data on the growth rate of sorghum plants is used: See 
Milliken and Johnson (1989). The experimenter has 20 growth chambers and conducts an experiment to 
study the effects of five temperature levels combined with each of four humidity levels on the growth rate 
of sorghum plants. Ten sorghum plants of the same species are placed in each of the 20 growth chambers 
and temperature by humidity treatment combinations are randomly assigned to the 20 chambers. Heights 
were measured after growing for a month. The mean heights in centimeters of ten plants from each 
growth chamber are given in Table 2. According to the Type I interaction plots and the Type II interaction 
plots shown in Figure 5 and Figure 6, there is interaction between humidity and temperature. The scree 
plot shown in Figure 7 suggests that one interaction term in the AMMI model would be sufficient to 
model these two-way data. 
 Tukey's single-degree-of-freedom test for nonadditivity is provided in Table 3 ( 28.40,  .0002F p= = ) 
and it shows that there is significant interaction in these data. Figure 8 shows the fit of Tukey's model to 
the data. This is a Type II interaction plot along with the estimated regression lines given by Tukey's 
model with a line for each temperature. The estimated regression equations are also shown for each 
temperature level at the bottom of the plot. The concurrency test between Tukey's and Mandel's model is 
given in Table 4 ( 4,77,  .0343F p= = ) and it suggests that Mandel's model describes the interaction 
significantly better than Tukey's model. Mandel's test for interaction ( 17.99,  .0005F p= = ) reveals that 
there is significant interaction in these data. Figure 9 shows the fit of Mandel's model to the data. 
Estimation of the estimated regression lines in Figure 9 would seem to indicate that there is very little 
interaction between temperature levels 50, 60, and 70 and all humidity levels because the three lines 
associated with these temperature levels are nearly parallel to each other. The estimate of the experimental 
error variance from Mandel's model is 5.007969 with 8 degrees of freedom. Table 5 shows the results of 
fitting an AMMI model with one interaction term. The value of the pseudo F-test statistic for interaction is 
4.07 and its p-value is 0.1058. The estimate of the experimental error variance is 10.694815 with degrees 
of freedom, 3.7062. The largest characteristic root of TZ Z  and TZZ  is 360.809876. The estimate 1̂λ  is 
18.995 and the estimates of two interaction parameter vectors are [ ]1ˆ .616 .302  .225  .692T = − −α , and 

[ ]1ˆ -.369 - .316 - .346  .279  .753T =γ , respectively. Note that the first three elements of 1γ̂  are nearly the 
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same. Thus, the maximum likelihood estimate of the interaction parameter vector 1γ  also suggests that 
the lower three temperature levels do not interact with humidity. 
 Mandel's model suggests there is interaction in these data while the AMMI model suggests there is no 
interaction in the data. In this example, Mandel's test is likely more powerful than the AMMI test since 
the form of the interaction test in Mandel's model is more specific. Mandel's model provides a better fit to 
these data since the estimate of 2σ  from Mandel's model is much smaller than the estimate of 2σ  from 
the AMMI model. Also note that the sum of squares for interaction from Mandel's model is 360.383249 
with 4 degrees of freedom and the pseudo sum of squares for interaction from the AMMI model is 
360.809876 with degrees of freedom, 8.2938. An approximate test of whether the AMMI model is 
significantly better than Mandel's model is given by 
 

 * (360.809876 360.383249) (8.2938 4) 0.0093
10.694815

F − −
= =  

 
with degrees of freedom 4.2938 and 3.7062. This *F  is not statistically significant indicating that the 
AMMI model is not significantly better than Mandel's model. 
 Table 6 shows the results of testing all possible pairwise row and pairwise column interaction contrasts 
based on the estimate of 2σ  given by Mandel's model where one * indicates significance at the 10% 
level, two ** indicates significance at the 5% level, and three *** indicates significance at the 1% level. 
There are no *'s in the rows of Table 6 identified by 1,2; 1,3; and 2,3 where 1≡50˚, 2≡60˚, and 3≡70˚. 
This also indicates there is no statistically significant interaction between the lower three temperature 
levels and humidity. 
 

5  CONCLUSION 
 
 Software for analyzing interaction in two-way experiments is not currently available for wide-spread 
use. This research involves developing user-friendly statistical software for the analysis of interaction in 
two-way experiments. A set of SAS® macros, called the AMMI macros, are developed. The AMMI 
macros provide three stages of analytic tools; pre-analysis for diagnosing interaction, model fitting for 
selecting a suitable model, and testing interaction contrasts for finding patterns of interaction in the data. 
The macros also provide many useful graphical displays to help one determine those combinations of the 
two treatment factors that interact and to help one interpret the results of the analyses. The developed 
software will soon be available at the author's web-site along with a user's manual. These will allow many 
researchers to use multiplicative interaction models to describe real-life phenomena. Examples were 
given to illustrate the use of the macros and how one might interpret the output. 
 In conclusion, it is hoped that the SAS® macros developed in this research will provide a data analysis 
tool to researchers needing to analyze two-way nonreplicated experiments. These methods might 
accelerate development of new methods related to this area of research. 
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Table 1  An ANOVA table for the AMMI model with k  interaction terms 
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Table 2  Average height of 10 sorghum plants 

 Humidity, % 
Temperature, ˚F 20 40 60 80 

50 
60 
70 
80 
90 

12.3 
13.7 
17.8 
12.1 
 6.9 

19.6 
16.9 
20.0 
17.4 
18.8 

25.7 
27.0 
26.3 
36.9 
35.0 

30.4 
31.5 
35.9 
43.4 
53.0 

 
Table 3  Fitting Tukey's model to the sorghum data 

The Tukey's Model: Height = Mu + Humidity + Temp + Lambda*^Humidity*^Temp  
 
Dependent Variable: Height  
                            Sum of  
Source            DF       Squares   Mean Square  F Value  Pr > F 
 
Model              8   2499.567009    312.445876    30.74  <.0001 
Error             11    111.794991     10.163181 
Corrected Total   19   2611.362000  
 
       R-Square     Coeff Var      Root MSE    Height Mean        
       0.957189      12.73661      3.187974       25.03000  
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Table 3  (continue) 
 
                            Sum of  
Source            DF       Squares   Mean Square  F Value  Pr > F 
 
Humidity           3   2074.298000    691.432667    68.03  <.0001 
Temp               4    136.617000     34.154250     3.36  0.0498 
Tukey's Test for   1    288.652009    288.652009    28.40  0.0002 
Nonadditivity  
 
                                    Standard  
Parameter            Estimate          Error   t Value   Pr > |t| 
 
Intercept         25.03000000     0.71285276     35.11     <.0001 
Humidity  20     -12.47000000     1.42570551     -8.75     <.0001 
Humidity  40      -6.49000000     1.42570551     -4.55     0.0008 
Humidity  60       5.15000000     1.42570551      3.61     0.0041 
Humidity  80      13.81000000     1.42570551      9.69     <.0001 
Temp      50      -3.03000000     1.59398722     -1.90     0.0838 
Temp      60      -2.75500000     1.59398722     -1.73     0.1119 
Temp      70      -0.03000000     1.59398722     -0.02     0.9853 
Temp      80       2.42000000     1.59398722      1.52     0.1572 
Temp      90       3.39500000     1.59398722      2.13     0.0566 
Lambda             0.14272970     0.02678193      5.33     0.0002 

 
Table 4  Fitting Mandel's model to the sorghum data 

Test for Concurrency of Mandel's Model - line for each Temp 
Height = Mu+Humidity+Temp+Lambda*^Humidity*^Temp+Temp*^Humidity 
 
Dependent Variable: Height 
 
                              Sum of  
Source               DF      Squares Mean Square  F Value  Pr > F  
 
Model                11  2571.298249  233.754386    46.68  <.0001  
Error                 8    40.063751    5.007969  
Corrected Total      19  2611.362000  
 

R-Square     Coeff Var      Root MSE    Height Mean        
       0.984658      8.940668      2.237849       25.03000  
 
                              Sum of  
Source               DF      Squares Mean Square  F Value  Pr > F  
 
Humidity              3  2074.298000  691.432667   138.07  <.0001  
Temp                  4   136.617000   34.154250     6.82  0.0108  
Tukey's Interaction   1   288.652009  288.652009    57.64  <.0001  
Test for Concurrency  3    71.731240   23.910413     4.77  0.0343  
 
 
The MANDEL'S Model: Height = Mu+Humidity+Temp+Temp*^Humidity 
Interaction Term Regressed on Humidity Effect 
 
Dependent Variable: Height 
 
                             Sum of  
Source              DF      Squares  Mean Square  F Value  Pr > F  
 
Model               11  2571.298249   233.754386    46.68  <.0001  
Error                8    40.063751     5.007969  
Corrected Total     19  2611.362000  
 

R-Square     Coeff Var      Root MSE    Height Mean        
       0.984658      8.940668      2.237849       25.03000  
 
                             Sum of  
Source              DF      Squares  Mean Square  F Value  Pr > F  
 
Humidity             3  2074.298000   691.432667   138.07  <.0001  
Temp                 4   136.617000    34.154250     6.82  0.0108  
Mandel's Test for    4   360.383249    90.095812    17.99  0.0005  
Interaction 
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Table 5  Fitting an AMMI model to the sorghum data 
The AMMI(1) Model: Height = Mu+Humidity+Temp+MI1*Alpha1*Gamma1 
DF read from the table AMMI.EX_L 
 
Dependent Variable: Height  
 
                             Sum of                Pseudo  
Source              DF      Squares  Mean Square  F Value   Pr>F*  
 
Model           15.294  2571.724876   168.154734    15.72  0.0109  
Error           3.7062    39.637124    10.694815  
Corrected Total     19  2611.362000  
 
 
       R-Square     Coeff Var      Root MSE    Height Mean        
       0.984821      13.06549      3.270293       25.03000  
 
 
                             Sum of                Pseudo  
Source              DF      Squares  Mean Square  F Value   Pr>F*  
 
Humidity             3  2074.298000   691.432667    64.65  0.0011  
Temp                 4   136.617000    34.154250     3.19  0.1534  
MI1             8.2938   360.809876    43.503566     4.07  0.1058  
 
 
Parameter    Estimate 
  
MI1            18.995  
Alpha1         -0.616     -0.302      0.225      0.692  
(Humidity 4)     (20)       (40)       (60)       (80)  
Gamma1         -0.369     -0.316     -0.346      0.279      0.753  
(Temp 5)         (50)       (60)       (70)       (80)       (90)  

 
Table 6  Testing all 2 2× interaction contrasts for the sorghum data 

 
2 by 2 Interaction Contrasts: MSE=5.007969 with DF=8  
 
              Pseudo LSD(.10) =  8.32    *  
              Pseudo LSD(.05) = 10.32   **  
              Pseudo LSD(.01) = 15.02  ***  
 
 
        Factor        Levels    Level #: Values  
 
        Humidity           4    1: 20  
                                2: 40  
                                3: 60  
                                4: 80  
 
        Temp               5    1: 50  
                                2: 60  
                                3: 70  
                                4: 80  
                                5: 90  
 
 
                  Humidity (j1,j2)  
 
Temp  
(i1,i2)   1,2    1,3    1,4    2,3    2,4    3,4    
 
1,2  
1,3  
1,4              **     **     **    ***  
1,5              **    ***      *    ***     **  
2,3  
2,4              **     **      *     **  
2,5        *     **    ***           ***     **  
3,4             ***     **     **      *  
3,5        *    ***    ***      *    ***      * 
4,5                     **                   ** 
 

Applied Statistics in Agriculture 153

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2004/proceedings/10



  
 
 
 
 
 
 

ijµ  1B  2B  3B  4B  5B  

1T  19 26 28 24 23 

2T  26 33 35 31 30 

3T  23 30 32 28 27 

4T  28 35 37 33 32  

Figure 1  Type I and Type II interaction plots for an additive two-way model 
 

 
 
 
 
 
 
 

ijµ  1B  2B  3B  4B  5B  

1T  44 16 8 24 28 

2T  16 37 43 31 28 

3T  28 28 28 28 28 

4T  8 43 53 33 28  

Figure 2  Type I and Type II interaction plots for a Tukey's model 
 

 
 
 
 
 
 
 

ijµ  1B  2B  3B  4B  5B  

1T  14 16 8 24 33 

2T  28 37 43 31 26 

3T  22 28 28 28 29 

4T  32 43 53 33 24  

Figure 3  Type I and Type II interaction plots for a Mandel's model 
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ijµ  1B  2B  3B  4B  5B  

1T  14 -39 -97 199 18 

2T  28 65 97 -57 32 

3T  22 -1 -29 117 26 

4T  32 99 161 -143 36  

Figure 4  Type I and Type II interaction plots for an AMMI model 
 

 
Figure 5  Type I interaction plots for the sorghum data 
 

 
Figure 6  Type II interaction plots for the sorghum data 
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Figure 7  Scree plot for the sorghum data 
 

 
Figure 8  Type II interaction plot and lines predicted 
by Tukey's model for the sorghum data 

 
Figure 9  Type II interaction plot and lines predicted 
by Mandel's bundle-of-straight-lines model for the 
sorghum data 
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