720 research outputs found
Information theoretic security by the laws of classical physics
It has been shown recently that the use of two pairs of resistors with
enhanced Johnson-noise and a Kirchhoff-loop-i.e., a Kirchhoff-Law-Johnson-Noise
(KLJN) protocol-for secure key distribution leads to information theoretic
security levels superior to those of a quantum key distribution, including a
natural immunity against a man-in-the-middle attack. This issue is becoming
particularly timely because of the recent full cracks of practical quantum
communicators, as shown in numerous peer-reviewed publications. This
presentation first briefly surveys the KLJN system and then discusses related,
essential questions such as: what are perfect and imperfect security
characteristics of key distribution, and how can these two types of securities
be unconditional (or information theoretical)? Finally the presentation
contains a live demonstration.Comment: Featured in MIT Technology Review
http://www.technologyreview.com/view/428202/quantum-cryptography-outperformed-by-classical/
; Plenary talk at the 5th IEEE Workshop on Soft Computing Applications,
August 22-24, 2012, (SOFA 2012). Typos correcte
Primate innate immune responses to bacterial and viral pathogens reveals an evolutionary trade-off between strength and specificity
Despite their close genetic relatedness, apes and African and Asian monkeys (AAMs) differ in their susceptibility to severe bacterial and viral infections that are important causes of human disease. Such differences between humans and other primates are thought to be a result, at least in part, of interspecies differences in immune response to infection. However, because of the lack of comparative functional data across species, it remains unclear in what ways the immune systems of humans and other primates differ. Here, we report the whole-genome transcriptomic responses of ape species (human and chimpanzee) and AAMs (rhesus macaque and baboon) to bacterial and viral stimulation. We find stark differences in the responsiveness of these groups, with apes mounting a markedly stronger early transcriptional response to both viral and bacterial stimulation, altering the transcription of ~40% more genes than AAMs. Additionally, we find that genes involved in the regulation of inflammatory and interferon responses show the most divergent early transcriptional responses across primates and that this divergence is attenuated over time. Finally, we find that relative to AAMs, apes engage a much less specific immune response to different classes of pathogens during the early hours of infection, up-regulating genes typical of anti-viral and anti-bacterial responses regardless of the nature of the stimulus. Overall, these findings suggest apes exhibit increased sensitivity to bacterial and viral immune stimulation, activating a broader array of defense molecules that may be beneficial for early pathogen killing at the potential cost of increased energy expenditure and tissue damage. Copyrigh
D-wave superconductivity in doped Mott insulators
The effect of proximity to a Mott insulating phase on the charge transport
properties of a superconductor is determined. An action describing the low
energy physics is formulated and different scenarios for the approach to the
Mott phase are distinguished by different variation with doping of the
parameters in the action. A crucial issue is found to be the doping dependence
of the quasiparticle charge which is defined here and which controls the
temperature and field dependence of the electromagnetic response functions.
Presently available data on high-T superconductors are analysed. The
data, while neither complete nor entirely consistent, suggest that neither the
quasiparticle velocity nor the quasiparticle charge vanish as the Mott phase is
approached, in contradiction to the predictions of several widely studied
theories of lightly doped Mott insulators. Implications of the results for the
structure of vortices in high-T superconductors are determined. The
numerical coefficients in the field-dependent specific heat are given for
square and triangular vortex lattices.Comment: 12 pages. No figures. Submitted to JPCS (Proceedings of Chicago SNS
conference
Classtalk: A Classroom Communication System for Active Learning
This pdf file is an article describing the advantages of using Classtalk technology in the classroom to enhance classroom communication. Classtalk technology cab facilitate the presentation of questions for small group work, collec the student answers and then display histograms showing how the class answered. This new communication technology can help instructors create a more interactive, student centered classroom, especially when teaching large courses. The article describes Classtalk as a very useful tool not only for engaging students in active learning, but also for enhancing the overall communication within the classroom. This article is a selection from the electronic Journal for Computing in Higher Education. Educational levels: Graduate or professional
Projects as Knowledge Swirls in the Technological Innovation: Romania's Situation
The present paper uses as research basis a new way of thinking regarding the relation between innovation and knowledge - the Knowledge Flow Percolation Model (KFPM). In this model’s center, human beings are seen as thinking electrons, both consuming and generating knowledge flows. Through the interdependent actions of individuals, knowledge circulates inside organizations, allowing them to innovate in order to obtain competitive advantages. But there is a wide range of barriers which impede the creation and movement of flows in the model grid and consequently, hinder their change into innovation. The solution proposed by this paper as one of the most adequate instruments to make KFPM more spreadable is the project. On this basis, in an empirical study, we try to demonstrate the hypothesis of the positive influence of projects, as knowledge swirls, on the development of innovative skills which will help solving problems in the organization, creating and widening of knowledge and reducing the barriers in knowledge transfer.This work was supported by the project “Post-Doctoral Studies in Economics: training program for elite researchers – SPODE” co-funded from the European Social Fund through the Development of Human Resources Operational Programme 2007-2013, contract no.
POSDRU/89/1.5/S/61755
The hyperfine transition in light muonic atoms of odd Z
The hyperfine (hf) transition rates for muonic atoms have been re-measured
for select light nuclei, using neutron detectors to evaluate the time
dependence of muon capture. For F = 5.6 (2)
s for the hf transition rate, a value which is considerably more
accurate than previous measurements. Results are also reported for Na, Al, P,
Cl, and K; that result for P is the first positive identification.Comment: 12 pages including 5 tables and 4 figures, RevTex, submitted to Phys.
Rev.
Patterns in Calabi-Yau Distributions
We explore the distribution of topological numbers in Calabi–Yau manifolds, using the Kreuzer–Skarke dataset of hypersurfaces in toric varieties as a testing ground. While the Hodge numbers are well-known to exhibit mirror symmetry, patterns in frequencies of combination thereof exhibit striking new patterns. We find pseudo-Voigt and Planckian distributions with high confidence and exact fit for many substructures. The patterns indicate typicality within the landscape of Calabi–Yau manifolds of various dimension
Do Seasonal Glucocorticoid Changes Depend on Reproductive Investment? A Comparative Approach in Birds
Animals go through different life history stages such as reproduction, moult, or migration, of which some are more energy-demanding than others. Baseline concentrations of glucocorticoid hormones increase during moderate, predictable challenges and thus are expected to be higher when seasonal energy demands increase, such as during reproduction. By contrast, stress-induced glucocorticoids prioritize a survival mode that includes reproductive inhibition. Thus, many species down-regulate stress-induced glucocorticoid concentrations during the breeding season. Interspecific variation in glucocorticoid levels during reproduction has been successfully mapped onto reproductive investment, with species investing strongly in current reproduction (fast pace of life) showing higher baseline and lower stress-induced glucocorticoid concentrations than species that prioritize future reproduction over current attempts (slow pace of life). Here we test the >glucocorticoid seasonal plasticity hypothesis>, in which we propose that interspecific variation in seasonal changes in glucocorticoid concentrations from the non-breeding to the breeding season will be related to the degree of reproductive investment (and thus pace of life). We extracted population means for baseline (for 54 species) and stress-induced glucocorticoids (for 32 species) for the breeding and the non-breeding seasons from the database >HormoneBase>, also calculating seasonal glucocorticoid changes. We focused on birds because this group offered the largest sample size. Using phylogenetic comparative methods, we first showed that species differed consistently in both average glucocorticoid concentrations and their changes between the two seasons, while controlling for sex, latitude, and hemisphere. Second, as predicted seasonal changes in baseline glucocorticoids were explained by clutch size (our proxy for reproductive investment), with species laying larger clutches showing a greater increase during the breeding season-especially in passerine species. In contrast, changes in seasonal stress-induced levels were not explained by clutch size, but sample sizes were more limited. Our findings highlight that seasonal changes in baseline glucocorticoids are associated with a species' reproductive investment, representing an overlooked physiological trait that may underlie the pace of life
Fermionic SK-models with Hubbard interaction: Magnetism and electronic structure
Models with range-free frustrated Ising spin- and Hubbard interaction are
treated exactly by means of the discrete time slicing method. Critical and
tricritical points, correlations, and the fermion propagator, are derived as a
function of temperature T, chemical potential \mu, Hubbard coupling U, and spin
glass energy J. The phase diagram is obtained. Replica symmetry breaking
(RSB)-effects are evaluated up to four-step order (4RSB). The use of exact
relations together with the 4RSB-solutions allow to model exact solutions by
interpolation. For T=0, our numerical results provide strong evidence that the
exact density of states in the spin glass pseudogap regime obeys \rho(E)=const
|E-E_F| for energies close to the Fermi level. Rapid convergence of \rho'(E_F)
under increasing order of RSB is observed. The leading term resembles the
Efros-Shklovskii Coulomb pseudogap of localized disordered fermionic systems in
2D. Beyond half filling we obtain a quadratic dependence of the fermion filling
factor on the chemical potential. We find a half filling transition between a
phase for U>\mu, where the Fermi level lies inside the Hubbard gap, into a
phase where \mu(>U) is located at the center of the upper spin glass pseudogap
(SG-gap). For \mu>U the Hubbard gap combines with the lower one of two SG-gaps
(phase I), while for \mu<U it joins the sole SG-gap of the half-filling regime
(phase II). We predict scaling behaviour at the continuous half filling
transition. Implications of the half-filling transition between the deeper
insulating phase II and phase I for delocalization due to hopping processes in
itinerant model extensions are discussed and metal-insulator transition
scenarios described.Comment: 29 pages, 26 Figures, 4 jpeg- and 3 gif-Fig-files include
Mass-renormalized electronic excitations at (, 0) in the superconducting state of
Using high-resolution angle-resolved photoemission spectroscopy on
, we have made the first observation of a
mass renormalization or "kink" in the E vs. dispersion relation
localized near . Compared to the kink observed along the nodal
direction, this new effect is clearly stronger, appears at a lower energy near
40 meV, and is only present in the superconducting state. The kink energy scale
defines a cutoff below which well-defined quasiparticle excitations occur. This
effect is likely due to coupling to a bosonic excitation, with the most
plausible candidate being the magnetic resonance mode observed in inelastic
neutron scattering
- …