33 research outputs found

    Characterizing Phantom Arteries with Multi-Channel Laser Ultrasonics and Photo-Acoustics

    Get PDF
    Multi-channel photo-acoustic and laser ultrasonic waves are used to sense the characteristics of proxies for healthy and diseased vessels. The acquisition system is non-contacting and non-invasive with a pulsed laser source and a laser vibrometer detector. As the wave signatures of our targets are typically low in amplitude, we exploit multi-channel acquisition and processing techniques. These are commonly used in seismology to improve the signal-to-noise ratio of data. We identify vessel proxies with a diameter on the order of 1 mm, at a depth of 18 mm. Variations in scattered and photo-acoustic signatures are related to differences in vessel wall properties and content. The methods described have the potential to improve imaging and better inform interventions for atherosclerotic vessels, such as the carotid artery

    Status and prospects for renewable energy using wood pellets from the southeastern United States

    Get PDF
    The ongoing debate about costs and benefits of wood-pellet based bioenergy production in the southeastern United States (SE USA) requires an understanding of the science and context influencing market decisions associated with its sustainability. Production of pellets has garnered much attention as US exports have grown from negligible amounts in the early 2000s to 4.6 million metric tonnes in 2015. Currently, 98% of these pellet exports are shipped to Europe to displace coal in power plants. We ask, ‘How is the production of wood pellets in the SE USA affecting forest systems and the ecosystem services they provide?’ To address this question, we review current forest conditions and the status of the wood products industry, how pellet production affects ecosystem services and biodiversity, and what methods are in place to monitor changes and protect vulnerable systems. Scientific studies provide evidence that wood pellets in the SE USA are a fraction of total forestry operations and can be produced while maintaining or improving forest ecosystem services. Ecosystem services are protected by the requirement to utilize loggers trained to apply scientifically based best management practices in planning and implementing harvest for the export market. Bioenergy markets supplement incomes to private rural landholders and provide an incentive for forest management practices that simultaneously benefit water quality and wildlife and reduce risk of fire and insect outbreaks. Bioenergy also increases the value of forest land to landowners, thereby decreasing likelihood of conversion to nonforest uses. Monitoring and evaluation are essential to verify that regulations and good practices are achieving goals and to enable timely responses if problems arise. Conducting rigorous research to understand how conditions change in response to management choices requires baseline data, monitoring, and appropriate reference scenarios. Long-term monitoring data on forest conditions should be publicly accessible and utilized to inform adaptive management

    Fixed Dystonia in Complex Regional Pain Syndrome: a Descriptive and Computational Modeling Approach

    Get PDF
    Background: Complex regional pain syndrome (CRPS) may occur after trauma, usually to one limb, and is characterized by pain and disturbed blood flow, temperature regulation and motor control. Approximately 25% of cases develop fixed dystonia. Involvement of dysfunctional GABAergic interneurons has been suggested, however the mechanisms that underpin fixed dystonia are still unknown. We hypothesized that dystonia could be the result of aberrant proprioceptive reflex strengths of position, velocity or force feedback. Methods: We systematically characterized the pattern of dystonia in 85 CRPS-patients with dystonia according to the posture held at each joint of the affected limb. We compared the patterns with a neuromuscular computer model simulating aberrations of proprioceptive reflexes. The computer model consists of an antagonistic muscle pair with explicit contributions of the musculotendinous system and reflex pathways originating from muscle spindles and Golgi tendon organs, with time delays reflective of neural latencies. Three scenarios were simulated with the model: (i) increased reflex sensitivity (increased sensitivity of the agonistic and antagonistic reflex loops); (ii) imbalanced reflex sensitivity (increased sensitivity of the agonistic reflex loop); (iii) imbalanced reflex offset (an offset to the reflex output of the agonistic proprioceptors). Results: For the arm, fixed postures were present in 123 arms of 77 patients. The dominant pattern involved flexion of the fingers (116/123), the wrists (41/123) and elbows (38/123). For the leg, fixed postures were present in 114 legs of 77 patients. The dominant pattern was plantar flexion of the toes (55/114 legs), plantar flexion and inversion of the ankle (73/114) and flexion of the knee (55/114). Only the computer simulations of imbalanced reflex sensitivity to muscle force from Golgi tendon organs caused patterns that closely resembled the observed patient characteristics. In parallel experiments using robot manipulators we have shown that patients with dystonia were less able to adapt their force feedback strength. Conclusions: Findings derived from a neuromuscular model suggest that aberrant force feedback regulation from Golgi tendon organs involving an inhibitory interneuron may underpin the typical fixed flexion postures in CRPS patients with dystonia.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin

    Mechanisms of metastasis

    Get PDF
    Metastasis is an enormously complex process that remains to be a major problem in the management of cancer. The fact that cancer patients might develop metastasis after years or even decades from diagnosis of the primary tumor makes the metastatic process even more complex. Over the years many hypotheses were developed to try to explain the inefficiency of the metastatic process, but none of these theories completely explains the current biological and clinical observations. In this review we summarize some of the proposed models that were developed in attempt to understand the mechanisms of tumor dissemination and colonization as well as metastatic progression

    Precision gestational diabetes treatment: a systematic review and meta-analyses

    Get PDF

    Genotype-stratified treatment for monogenic insulin resistance: a systematic review

    Get PDF

    All-optical extravascular laser-ultrasound and photoacoustic imaging of calcified atherosclerotic plaque in excised carotid artery

    No full text
    Photoacoustic (PA) imaging may be advantageous as a safe, non-invasive imaging modality to image the carotid artery. However, calcification that accompanies atherosclerotic plaque is difficult to detect with PA due to the non-distinct optical absorption spectrum of hydroxyapatite. We propose reflection-mode all-optical laser-ultrasound (LUS) imaging to obtain high-resolution, non-contact, non-ionizing images of the carotid artery wall and calcification. All-optical LUS allows for flexible acquisition geometry and user-dependent data acquisition for high repeatability. We apply all-optical techniques to image an excised human carotid artery. Internal layers of the artery wall, enlargement of the vessel, and calcification are observed with higher resolution and reduced artifacts with nonconfocal LUS compared to confocal LUS. Validation with histology and X-ray computed tomography (CT) demonstrates the potential for LUS as a method for non-invasive imaging in the carotid artery. Keywords: Atherosclerosis, Photoacoustic imaging, Laser-ultrasound, Calcification, Reverse-time migratio

    A Marchenko equation for acoustic inverse source problems

    No full text
    From acoustics to medical imaging and seismology, one strives to make inferences about the structure of complex media from acoustic wave observations. This study proposes a solution that is derived from the multidimensional Marchenko equation, to learn about the acoustic source distribution inside a volume, given a set of observations outside the volume. Traditionally, this problem has been solved by backpropagation of the recorded signals. However, to achieve accurate results through backpropagation, a detailed model of the medium should be known and observations should be collected along a boundary that completely encloses the volume of excitation. In practice, these requirements are often not fulfilled and artifacts can emerge, especially in the presence of strong contrasts in the medium. On the contrary, the proposed methodology can be applied with a single observation boundary only, without the need of a detailed model. In order to achieve this, additional multi-offset ultrasound reflection data must be acquired at the observation boundary. The methodology is illustrated with one-dimensional synthetics of a photoacoustic imaging experiment. A distribution of simultaneously acting sources is recovered in the presence of sharp density perturbations both below and above the embedded sources, which result in significant scattering that complicates the use of conventional methods.Applied Geophysics and Petrophysic
    corecore