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Characterizing phantom arteries with multi-channel
laser-ultrasonics and photoacoustics

Jami Johnson
Department of Physics, University of Auckland, Mechanical and Biomedical Engineering Department, Boise State University, Boise, ID, 83725

Kasper van Wijk
Department of Physics, University of Auckland

Michelle Sabick
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Multi-channel photoacoustic and laser-ultrasonic waves are used to sense the characteristics of proxies for
healthy and diseased vessels. The acquisition system is non-contacting and non-invasive with a pulsed laser
source, and a laser vibrometer detector. As the wave signatures of our targets are typically low in amplitude,
we exploit multi-channel acquisition and processing techniques. These are commonly used in seismology, to
improve the signal-to-noise ratio of our data. We identify vessel proxies with a diameter on the order of 1 mm,
at a depth of 18 mm. Variations in scattered and photoacoustic signatures are related to differences in vessel
wall properties and content. The methods described have the potential to improve imaging and better inform
interventions for atherosclerotic vessels, such as the carotid artery.

Keywords: Photoacoustic imaging, Laser-ultrasound, Calcification, Ultrasound imaging, Multichannel imag-
ing, Atherosclerosis

Introduction

The relationship between atherosclerotic plaque morphol-
ogy in the carotid artery and cerebrovascular events has been
of interest for many years [16, 20, 33, 55, 57]. Composi-
tional factors contribute to the vulnerability of an atheroscle-
rotic plaque to rupture, as opposed to degree of stenosis or pa-
tient symptoms [12]. These factors include the presence and
size of lipid pools, thickness of the fibrous cap, and presence
of inflammation and calcification [18, 36, 51, 53]. Addition-
ally, the geometry of an atherosclerotic vessel may contribute
to rupture risk [38].

Currently, no imaging modality can unambiguously iden-
tify vulnerable atherosclerotic plaques with the needed reso-
lution in a safe, noninvasive manner [12]. To image arteries
and identify stenosis, angiography is often used [42]. How-
ever, angiography uses ionizing radiation, requires the injec-
tion of a radiopaque dye, and is not recommended for charac-
terizing atherosclerotic lesions [5]. Optical methods, such as
optical coherence tomography (OCT) [56], Fourier transform
infrared spectroscopy (FTIR), and Raman spectroscopy [31],
can identify molecules with unique spectral signatures, such
as lipids and hemoglobin. Resolution is on the order of ten
micron, but optical scattering limits depth penetration to about
1 mm [31]. Multi-contrast MRI can detect lipid cores and
intraplaque hemorrhage in large arteries with sub-millimeter
resolution [9]. High cost, low signal-to-noise ratio, motion ar-
tifact, and long acquisition times limit widespread use of MRI
for plaque screening [9, 42, 47].

Electron-beam computed tomography (EBCT) and multi-
slice computed tomography (MSCT) are considered the gold
standard for evaluating the extent and advancement of vascu-

lar calcification [40]. A slice thickness as small as 0.5 to 0.75
mm can be used [34], but high cost, significant radiation expo-
sure, and reproducibility concerns for small lesions limit CT
modalities for calcification screening [40, 57]. Conversely, ul-
trasound imaging is low cost, portable, and safe [40]. Calcifi-
cation is characterized by hyperechoic amplitudes and acous-
tic shadowing. Despite these advantages, ultrasound has low
sensitivity for calcification detection, and acoustic shadowing
rarely accompanies small calcifications [52]. Intravascular ul-
trasound acquires cross-sectional images of vessels with a res-
olution of 0.05 - 0.1 mm, but is limited to depths of about 5 -
10 mm [42]. The invasive nature, cost, and additional opera-
tive time and equipment prohibit widespread use of IVUS for
routine plaque characterization [4].

Photoacoustic (PA) waves can image artery structure and
certain plaque constituents with unique spectral signatures.
For example, lipids are imaged with high resolution and con-
trast [3]. PA imaging is absorption based. The rapid absorp-
tion of modulated light causes thermoelastic expansion and
subsequent emission of acoustic waves. The depth limitations
of purely optical modalities are overcome using PA methods,
as multiple optical scattering events help to uniformly illumi-
nate chromophores and ultrasonic scattering is two to three
orders of magnitude weaker than optical scattering. There-
fore, PA imaging provides information about optical absorp-
tion while still allowing for high resolution deep within tissue
[55, 58].

The application of PA imaging to atherosclerotic plaque
characterization is also beginning to be explored. Recently,
the optical spectrum of lipids was exploited to visualize lipid
pools within the wall of a human aorta using PA imaging [3].
Additional advances include characterization of atheroscle-
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rotic plaques using intravascular ultrasound and photoacoustic
techniques [32, 51, 54], and PA detection of the inflammatory
response of atherosclerotic lesions using gold nanorods as a
targeting agent [22, 29, 60].

Calcification is not readily detected using PA methods, be-
cause calcium has an indistinct optical spectrum. The acoustic
properties of calcification, however, are different from soft tis-
sue. These properties can be exploited by generating an acous-
tic wave at the tissue surface and measuring the scattered wave
field as in traditional ultrasound imaging. A source laser can
be chosen such that a PA wave is generated in the vessel and
a laser-ultrasound (LU) wave is generated at the tissue sur-
face. Observing the behavior of both PA and LU waves may
provide the necessary information about plaque constituents,
such as lipid pools, as well as calcification.

Rousseau et al. [44] and Rousseau et al. [45] obtained dual
photoacoustic and ultrasound images using interferometric
detection. High resolution images of structures beyond 1 cm
deep were shown (300 µm), but hyperbolic artifacts remain
from limitations in image reconstruction. Here, we exploit
both optical and acoustic properties of artery surrogates using
multi-channel PA and LU techniques to boost the signal-to-
noise ratio for weakly scattering targets. Phantom studies are
presented using a laser source and a scanning vibrometer to
detect the acoustic signals. We detect structures on the order
of 1 mm and changes in acoustic impedance for a wall thick-
ness less than 250 µm. Our motivation is to improve PA and
LU resolution at depths beyond 1 cm using multiple detection
channels for a single source position. To take full advantage
of these multi-channel data, we use image processing tech-
niques common in multi-channel seismic methods. This has
the potential advantage to determine several constituents of
atherosclerotic plaque and structure geometry with high sen-
sitivity. In vessels such as the carotid artery, the information
obtained can be used to inform both preventative treatments
and surgical interventions. Improved detection of calcification
caused by implanted grafts, stents, or valves may also reduce
complications. The current tools and methods use only non-
ionizing radiation and have the advantages of being hands-
free, non-contact, and non-invasive.

Materials and Methods

A phantom was constructed to simulate the optical scatter-
ing and acoustic properties of human tissue. The phantom is
composed of 1% Intralipid R©(Sigma Aldrich, St. Louis, MO,
USA), 1% highly purified agar (A0930-05, USBiological,
Swampscott, MA, USA), and deionized water. Intralipid R©

is a phospholipid emulsion that is widely used for optical
and photoacoustic phantom studies, because it is a homoge-
neous and turbid medium without distinct absorption bands
[11, 13, 17, 30, 59]. Agar was used to solidify the phantom,
without notably increasing turbidity or absorption [11].

Artery surrogates that mimic absorbing and scattering prop-
erties of vascular structures with varying compositions were

Tube type None Polyester Acrylic
Trial Number 1. 2. 3. 4. 5.
Tube Filling – Air Dye Air Dye

TABLE I: Summary of experiments. Trial numbers correspond to the
type of tube embedded in the phantom and its content.

Medium ρ( kg
m3 ) v(

m
s
) µa(cm

−1)
Phantom 1000 1390 0.15
Polyester 1400 2400 –
Acrylic 1180 2740 –

Air 1.2 343 –
Dye 786 1170 20

TABLE II: Acoustic and optical properties of tissue phantom and em-
bedded mediums from [1, 6, 8, 39, 50], where ρ is the mass density,
v is the speed of sound, and µa is the optical absorption coefficient.

embedded 18 mm below the surface of the phantom. A
thin-walled polyester tube (1.57 mm inner diameter, 12.7 µm
wall-thickness, Advanced Polymers, Salem, NH, USA) repre-
sents a healthy vessel. This tube is optically and acoustically
clear at the wavelengths used. In contrast, an optically clear
acrylic tube (1.4 mm inner diameter, 233.5 µm wall thickness,
Paradigm Optics, Vancouver, WA, USA) represents a calci-
fied artery. The thicker acrylic wall has a modulus of rigidity
comparable to a calcified artery (∼ 1.8 GPa), and imposes an
acoustic contrast in our sample [2]. Both tubes first contained
air, but we also mimic the presence of blood in the vessels with
an infrared absorbing dye (Epolight

TM
2057, Epolin, Newark,

NJ, USA) dissolved in isopropyl alcohol. A phantom-only
trial was recorded for a total of five trials (Table 1).

The optical and acoustic properties of each phantom artery
determine the magnitude of PA generation and LU scattering,
respectively. The fraction of an acoustic wave reflected at the
interface between two media is defined by the reflection coef-
ficient

R =
Z − Z0

Z + Z0
, (1)

where Z = ρv is the acoustic impedance of the medium: the
product of density ρ and acoustic velocity v. The photoacous-
tic amplitude is proportional to the optical absorption coeffi-
cient of the medium and the energy of the source beam [6].
Table 2 shows the relevant acoustic and optical properties for
each medium used, and the theoretical reflection coefficients
for each interface are recorded in Table 3.

The experimental setup is shown in Figure 1. A 1064-
nm Neodymium-doped Yttrium Aluminum Garnet (Nd:YAG)
source laser was used (Quanta-Ray, Spectra Physics, Newport
Corporation, Irvine, CA, USA). The beam was unfocused (8
mm diameter) with a 10-ns pulse width and 11-Hz repetition
rate. The pulse energy was kept at approximately 100 mJ/cm2,
but we recognize additional energy considerations will be re-
quired to keep the laser exposure for human tissue below the
American National Standard Institute maximum permissible
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Interface R
phantom-air ∼ −1
phantom-dye −0.2

phantom-polyester ∼ 0
phantom-acrylic 0.4

TABLE III: Reflection coefficientR (Eq. 1) for the interface between
the tissue phantom and each embedded medium.

FIG. 1: Photograph of experimental setup. The vessel proxy is
placed under the midway point of the receiver scan line.

exposure for repetitive pulses at 1064 nm (ANSI, 2007). The
source beam incident on the phantom surface provides both
penetration of the laser light into the phantom for PA genera-
tion by the dye, and absorption of the source at the surface for
LU generation (Figure 2). A scanning heterodyne vibrome-
ter detects the PA and LU wave fields (PSV-400-M4, Polytec,
Irvine, CA, USA). A reflective tape was placed across the de-
tection surface to enhance sensitivity of signal detection by
the vibrometer. Line scans were recorded in reflection mode,
where the detection beam was scanned by 336.9 µm incre-
ments away from the location of the source beam, with an
average of 64 A-scans recorded per beam location (Figure 1).
A total of 95 wave fields were recorded, covering a total scan
distance of 3.2 cm.

FIG. 2: Diagrams of the laser-ultrasound (top) and photoacoustic
(bottom) generation and scattering in the transverse plane of the
phantom. In the bottom panel, the optical energy of the source beam
is shown illuminating an absorber embedded in the phantom, which
generates a photoacoustic wave. A laser-ultrasound wave generated
at the surface of the phantom is shown in the top panel. The laser-
ultrasound and photoacoustic waves are detected at the phantom sur-
face.

Results

With the exception of Trial 1, each of the trials detected a
phantom vessel. The B-scan for Trial 5, an acrylic tube filled
with dye inside the phantom, is shown in Figure 3. The ar-
rival time t of the PA and LU waves scattered from the phan-
tom vessel are a function of the receiver location x and the
wavespeed in the phantom tissue v:

t2 = t20 + (x/v)2, (2)

where t0 is the time associated with the waves traveling from
source to scatterer. In the PA experiment t0 ≈ 0, as the ul-
trasound is generated at the phantom vessel. In addition to
the LU and PA waves from the scatterer, we detect a low-
frequency wave that propagates through the air and a wave
that goes directly from source to receiver through the phan-
tom.

A highpass Butterworth filter (100-kHz cut-off frequency)
was used to remove the low-frequency air wave. The direct
wave was removed using a frequency-wave number (f-k) filter
[for further detail on the f-k filter design, see 27]. F-k filters,
often called velocity filters, are used in multi-channel (seis-
mic) recordings to separate or remove waves arriving from
different directions [7, 24]. Figure 3 is the B-scan after the
band-pass filter and the suppression of waves arriving with an
apparent velocity between 1380 m/s and 1400 m/s [for further
detail on the f-k filter design, see 27].
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FIG. 3: B-scan of Trial 5 (acrylic tube filled with dye) before (top)
and after (bottom) band-pass and frequency-wavenumber filtering.

Semblance

A correction for the path-length difference for different val-
ues of the scattered PA and LU waves as a function of receiver
location x (Equation 2) was made so that all scattered waves
appear to arrive at the same time t0. In multi-channel seismic
processing this is called a normal move-out (NMO) correction
[15, 46].

With the proper correction (i.e., the correct value of v), the
scattered waves for all receiver positions x arrive at t0. In
practice, v is not (exactly) known, and we iterate the process
for different values of v, until the corrected wave forms align,
and the sum of the aligned wave forms has the largest am-
plitude. The ratio of summed amplitude of the signal to the
average of the noise level is termed semblance:

S =

√
max(signal2)
mean(noise2)

. (3)

The wave speed at maximum semblance is an accurate mea-
sure of the speed of sound in the medium, and the maximum
semblance value can be used as an objective measure of re-
solving contrast. NMO-corrected images and corresponding
stacked traces are shown for Trial 5 in Figure 4 and Trial 2 in
Figure 5, respectively.
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FIG. 4: (Top) Semblance of the photoacoustic (PA) wave for the
acrylic tube filled with dye (Trial 5), as a function of velocity
(optimum value v = 1390 m/s). (Middle) Normal move-out
(NMO)-corrected wave forms. (Bottom) Stacked (sum) of the NMO-
corrected wave forms. An arrow points to the location of the scat-
terer. Evidence of the generated PA wave resonating follows the first
arrival [see 27].

The maximum semblance value S for each trial is displayed
in Table 4. For comparison, we also report the signal-to-noise
ratio of the single channel recording where the receiver is po-
sitioned directly over the target. The details of the NMO cor-
rection and semblance analysis are described in [27].
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FIG. 5: Wave forms for Trial 2 (top) and Trial 3 (bottom) before and
after the semblance analysis and stacking of the photoacoustic and
laser-ultrasound waves. The unstacked traces were recorded directly
above the scatterer.

Trial 1 2 3 4 5
PA NMO Stack n/a n/a 18 n/a 13

Unstacked n/a n/a – n/a –
LU NMO Stack n/a 6.9 – 3.6 5.1

Unstacked n/a – – – –

TABLE IV: Maximum semblance, S, for each trial. Large values cor-
respond to a higher ratio of signal wave amplitude to the background
noise level.

Discussion

All the LU and the PA trials detected the phantom vessel.
Here, we briefly discuss some of the observations for each
trial.

Because the outer diameters of the two tubes is comparable,

the thinner-walled tube has a larger internal volume. With air
in the tubes, LU scattering in Trial 2 (thin) is stronger than
in Trial 4 (thicker tube). We attribute this to the larger elastic
impedance contrast between air and the tissue phantom mate-
rial. With dye in the tubes, the impedance constrast with the
tissue phantom is apparently dominated by the tube walls: the
thicker-walled tube has stronger LU scattering.

Dye inside the tubes in Trial 3 and 5, representing
hemoglobin, resulted in stronger PA generation than with air.
Based on the maximum semblance for each trial stated in Ta-
ble 4, the amplitude of the PA wave generated in the thinner
polyester tube was significantly higher than the wave gener-
ated in the thicker acrylic tube. While a slight hyperechoic
effect was expected by PA generation in a stiff tube, it appears
that the relatively larger volume of dye in the thinner tube of
Trial 3 results in more absorption and a higher PA wave am-
plitude than in Trial 5.

Trial 5 with its thicker wall size and dye generated stronger
LU scattering and weaker PA generation than Trial 3. In gen-
eral, stronger LU scattering and weaker PA generation may be
an indication of an effective increase of vessel wall thickness,
potentially related to calcification.

We found that the LU signals were of a higher frequency
than the PA waves: ∼ 1 MHz versus ∼ 500 kHz, respectively.
The PA generating tube has a diameter of about 1.5 mm, cor-
responding to an expected frequency νPA = 1390m/s

2∗1.5mm ≈
460 kHz, which is in good agreement with our experimen-
tal data. It appears that the PA wavelength is dominated by
resonant modes defined by the size of the vessel. This notion
is further confirmed by reverberations observed in Figure 4.

Recording multiple receiver positions for each source posi-
tion proved advantageous. First, it allows us to apply spatial
frequency filtering (Figure 3). Secondly, the frequency of LU
excitation is angle dependent. In fact, pressure wave genera-
tion is at a minimum in the direction orthogonal to the gener-
ation surface [49]. Because the depth of the target is unknown
a priori, it is preferable to record multiple source-receiver off-
sets. Stacking multi-channel recordings after a normal move-
out correction greatly enhanced the signal-to-noise ratio (see
Table 4 and Figures 4 and 5). However, recording multiple
receiver locations for a source position significantly increases
acquisition times.

In this study, phantom arteries were chosen to simulate
healthy and calcified vessels. The tube representing a cal-
cified artery was chosen such that there was a large acous-
tic impedance mismatch between the tissue phantom and the
tube, analogous to calcification and soft tissue. Acrylic was
chosen, because it has a relatively high acoustic impedance,
and is optically transparent at the source wavelength to ensure
minimal interference with PA absorption. However, true calci-
fication has higher impedance. Using the acoustic velocity of
calcification [∼ 2000 m/s 14] and the density of the primary
component of calcification, hydroxyapatite [∼ 3.0 g/cm3 10],
a rough estimate for the acoustic impedance is ∼ 6 N·s/cm3.
Acrylic has an acoustic velocity ∼ 2700 m/s and density
∼ 1.2 g/cm3 [1], resulting in an impedance of 3.2 N·s/cm3.
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Therefore, we expect further improvements in detection sen-
sitivity for calcifications of the same dimension as our tube ex
vivo. Future work will validate this method in arteries ex vivo.

Conclusions

Multi-channel recordings and seismic data processing tech-
niques enhance photoacoustic and laser-ultrasonic signals
from proxies of vascular structures in phantom tissue mate-
rial. Experiments were conducted with inclusions analogous
to healthy and calcified arteries embedded. Using these geo-
physical image processing techniques, we were able to com-
paratively analyze relatively weak signals from photoacoustic
and laser-ultrasonic contrasts from ∼ 1-mm objects at a depth
of ∼ 2 cm. The non-invasive system has potential to improve
detection of both scatterers with low levels of blocking (such
as calcification) and weakly absorbing chromophores. This
may be particularly beneficial for determining the morphol-
ogy of atherosclerotic plaque in the carotid artery.
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