3,178 research outputs found
The NASA/MSFC global reference atmospheric model: 1990 version (GRAM-90). Part 1: Technical/users manual
A technical description of the NASA/MSFC Global Reference Atmospheric Model 1990 version (GRAM-90) is presented with emphasis on the additions and new user's manual descriptions of the program operation aspects of the revised model. Some sample results for the new middle atmosphere section and comparisons with results from a three dimensional circulation model are provided. A programmer's manual with more details for those wishing to make their own GRAM program adaptations is also presented
The NASA/MSFC global reference atmospheric model: 1990 version (GRAM-90). Part 2: Program/data listings
A new (1990) version of the NASA/MSFC Global Reference Atmospheric Model (GRAM-90) was completed and the program and key data base listing are presented. GRAM-90 incorporate extensive new data, mostly collected under the Middle Atmosphere Program, to produce a completely revised middle atmosphere model (20 to 120 km). At altitudes greater than 120 km, GRAM-90 uses the NASA Marshall Engineering Thermosphere model. Complete listings of all program and major data bases are presented. Also, a test case is included
Exploring the Chemical Composition and Double Horizontal Branch of the Bulge Globular Cluster NGC 6569
Photometric and spectroscopic analyses have shown that the Galactic bulge
cluster Terzan 5 hosts several populations with different metallicities and
ages that manifest as a double red horizontal branch (HB). A recent
investigation of the massive bulge cluster NGC 6569 revealed a similar, though
less extended, HB luminosity split, but little is known about the cluster's
detailed chemical composition. Therefore, we have used high-resolution spectra
from the Magellan-M2FS and VLT-FLAMES spectrographs to investigate the chemical
compositions and radial velocity distributions of red giant branch and HB stars
in NGC 6569. We found the cluster to have a mean heliocentric radial velocity
of -48.8 km/s (sigma = 5.3 km/s; 148 stars) and a mean [Fe/H] =-0.87 dex (19
stars), but the cluster's 0.05 dex [Fe/H] dispersion precludes a significant
metallicity spread. NGC 6569 exhibits light- and heavy-element distributions
that are common among old bulge/inner Galaxy globular clusters, including clear
(anti)correlations between [O/Fe], [Na/Fe], and [Al/Fe]. The light-element data
suggest that NGC 6569 may be composed of at least two distinct populations, and
the cluster's low mean [La/Eu] = -0.11 dex indicates significant pollution with
r-process material. We confirm that both HBs contain cluster members, but
metallicity and light-element variations are largely ruled out as sources for
the luminosity difference. However, He mass fraction differences as small as
delta Y ~ 0.02 cannot be ruled out and may be sufficient to reproduce the
double HB.Comment: 72 pages, 14 figures, 8 tables; published in The Astronomical
Journal; electronic versions of all tables are available in the published
versio
The NASA/MSFC Global Reference Atmospheric Model-1995 version (GRAM-95)
The latest version of the Global Reference Atmospheric Model (GRAM-95) is presented and discussed. GRAM-95 uses the new Global Upper Air Climatic Atlas (GUACA) CD-ROM data set, for 0- to 27-km altitudes. As with earlier versions, GRAM-95 provides complete geographical and altitude coverage for each month of the year. Individual years 1985 to 1991 and a period-of-record (1980 to 1991) can be simulated for the GUACA height range. GRAM-95 uses a specially developed data set, based on Middle Atmosphere Program (MAP) data, for the 20- to 120-km height range, and the NASA Marshall Engineering Thermosphere (MET) model for heights above 90 km. Fairing techniques assure a smooth transition in the overlap height ranges (20 to 27 km and 90 to 120 km). In addition to the traditional GRAM variables of pressure, density, temperature and wind components, GRAM-95 now includes water vapor and 11 other atmospheric constituents (O3, N2O, CO, CH4, CO2, N2, O2, O, A, He, and H). A new, variable-scale perturbation model provides both large-scale and small-scale deviations from mean values for the thermodynamic variables and horizontal and vertical wind components. The perturbation model includes new features that simulate intermittency (patchiness) in turbulence and small-scale perturbation fields. The density perturbations and density gradients (density shears) computed by the new model compare favorably in their statistical characteristics with observed density perturbations and density shears from 32 space shuttle reentry profiles. GRAM-95 provides considerable improvement in wind estimates from the new GUACA data set, compared to winds calculated from the geostrophic wind relations previously used in the 0- to 25-km height range. The GRAM-95 code has been put into a more modular form, easier to incorporate as subroutines in other programs (e.g., trajectory codes). A complete user's guide for running the program, plus sample input and output, is provided
The Prediction Properties of Inverse and Reverse Regression for the Simple Linear Calibration Problem
The calibration of measurement systems is a fundamental but under-studied problem within industrial statistics. The origins of this problem go back to basic chemical analysis based on NIST standards. In today's world these issues extend to mechanical, electrical, and materials engineering. Often, these new scenarios do not provide "gold standards" such as the standard weights provided by NIST. This paper considers the classic "forward regression followed by inverse regression" approach. In this approach the initial experiment treats the "standards" as the regressor and the observed values as the response to calibrate the instrument. The analyst then must invert the resulting regression model in order to use the instrument to make actual measurements in practice. This paper compares this classical approach to "reverse regression," which treats the standards as the response and the observed measurements as the regressor in the calibration experiment. Such an approach is intuitively appealing because it avoids the need for the inverse regression. However, it also violates some of the basic regression assumptions
Search for Outbursts in the Narrow 511-keV Line from Compact Sources Based on INTEGRAL Data
We present the results of a systematic search for outbursts in the narrow
positron annihilation line on various time scales (5x10^4 - 10^6 s) based on
the SPI/INTEGRAL data obtained from 2003 to 2008. We show that no outbursts
were detected with a statistical significance higher than ~6 sigma for any of
the time scales considered over the entire period of observations. We also show
that, given the large number of independent trials, all of the observed spikes
could be associated with purely statistical flux fluctuations and, in part,
with a small systematic prediction error of the telescope's instrumental
background. Based on the exposure achieved in ~6 yr of INTEGRAL operation, we
provide conservative upper limits on the rate of outbursts with a given
duration and flux in different parts of the sky.Comment: 16 pages, 8 figures. To be published in Astronomy Letters, 2010, Vol.
36, No 4, p. 23
Anatomy of wintertime ozone associated with oil and natural gas extraction activity in Wyoming and Utah
Winter maximum daily 8-hour average (MDA8) ozone concentrations in the Upper Green River Basin, Wyoming (UGRBWY) and the Uintah Basin, Utah (UBUT) have frequently exceeded 100 ppb in January, February and March, in the past few years. Such levels are well above the U.S. air quality standard of 75 ppb. In these two remote basins in the Rockies, local ozone precursor emissions result from intense oil and gas extraction activities that release methane, volatile organic compounds (VOCs), and nitrogen oxides (NOx) to the atmosphere. These emissions become trapped beneath a stable and shallow (~50–200 m) boundary layer maintained in low wind conditions. Wintertime surface ozone formation conditions are more likely in the UBUT than in the UGRBWY as the topography of the UBUT is an enclosed basin whereas the UGRBWY is open on its southern perimeter thus allowing for more air turnover. With snow-covered ground, high ozone events regularly begin in mid-December and last into early March in the UBUT whereas they usually do not begin in earnest until about a month later in the UGRBWY and may persist until mid-March. Winters without snow cover and the accompanying cold pool meteorological conditions do not experience high ozone events in either basin. For nine years with ozone observations in the UGRBWY (2005–2013) and four in the UBUT (2010–2013), all years with adequate (≥6 inches) and persistent snow cover, experienced days with ozone values ≥75 ppb except in 2012 in the UGRBWY when persistent high wind (>5 m/s) conditions were prevalent. Year to year differences in the occurrences of high ozone episodes appear to be driven primarily by differing meteorological conditions rather than by variations in ozone precursor levels
Recommended from our members
On the toughening of brittle materials by grain bridging:promoting intergranular fracture through grain angle, strength, andtoughness
The structural reliability of many brittle materials such asstructural ceramics relies on the occurrence of intergranular, as opposedto transgranular, fracture in order to induce toughening by grainbridging. For a constant grain boundary strength and grain boundarytoughness, the current work examines the role of grain strength, graintoughness, and grain angle in promoting intergranular fracture in orderto maintain such toughening. Previous studies have illustrated that anintergranular path and the consequent grain bridging process can bepartitioned into five distinct regimes, namely: propagate, kink, arrest,stall and bridge. To determine the validity of the assumed intergranularpath, the classical penentration/deflection problem of a crack impingingon an interface is reexamined within a cohesive zone framework forintergranular and transgranular fracture. Results considering both modesof propagation, i.e., a transgranular and intergranular path, reveal thatcrack-tip shielding is a natural outcome of the cohesive zone approach tofracture. Cohesive zone growth in one mode shields the opposing mode fromthe stresses required for cohesive zone initiation. Although stablepropagation occurs when the required driving force is equivalent to thetoughness for either transgranular or intergranular fracture, the mode ofpropagation depends on the normalized grain strength, normalized graintoughness, and grain angle. For each grain angle, the intersection ofsingle path and multiple path solutions demarcates "strong" grains thatincrease the macroscopic toughness and "weak" grains that decrease it.The unstable transition to intergranular fracture reveals that anincreasinggrain toughness requires a growing region of the transgranularcohesive zone be at and near the peak cohesive strength. The inability ofthe body to provide the requisite stress field yields an overdriven andunstable configuration. The current results provide restrictions for theachievement of substantial toughening through intergranularfracture
On the toughening of brittle materials by grain bridging: promoting intergranular fracture through grain angle, strength, and toughness
Abstract The structural reliability of many brittle materials such as structural ceramics relies on the occurrence of intergranular, as opposed to transgranular, fracture in order to induce toughening by grain bridging. For a constant grain boundary strength and grain boundary toughness, the current work examines the role of grain strength, grain toughness, and grain angle in promoting intergranular fracture in order to maintain such toughening. Previous studies have illustrated that an intergranular path and the consequent grain bridging process can be partitioned into five distinct regimes, namely: propagate, kink, arrest, stall and bridge. To determine the validity of the assumed intergranular path, the classical penentration/deflection problem of a crack impinging on an interface is reexamined within a cohesive zone framework for intergranular and transgranular fracture. Results considering both modes of propagation, i.e., a transgranular and intergranular path, reveal that crack-tip shielding is a natural outcome of the cohesive zone approach to fracture. Cohesive zone growth in one mode shields the opposing mode from the stresses required for cohesive zone initiation. Although stable propagation occurs when the required driving force is equivalent to the toughness for either transgranular or intergranular fracture, the mode of propagation depends on the normalized grain strength, normalized grain toughness, and grain angle. For each grain angle, the intersection of single path and multiple path solutions demarcates "strong" grains that increase the macroscopic toughness and "weak" grains that decrease it. The unstable transition to intergranular fracture reveals that an increasing grain toughness requires a growing region of the transgranular cohesive zone be at and near the peak cohesive strength. The Preprint submitted to Journal of the Mechanics and Physics of Solids 30 November 2007 inability of the body to provide the requisite stress field yields an overdriven and unstable configuration. The current results provide restrictions for the achievement of substantial toughening through intergranular fracture
Recommended from our members
A micromechanical basis for partitioning the evolution of grainbridging in brittle materials
A micromechanical model is developed for grain bridging inmonolithic ceramics. Specifically, bridge formation of a single,non-equiaxed grain spanning adjacent grains is addressed. A cohesive zoneframework enables crack initiation and propagation along grainboundaries. The evolution of the bridge is investigated through avariance in both grain angle and aspect ratio. We propose that thebridging process can be partitioned into five distinct regimes ofresistance: propagate, kink, arrest, stall, and bridge. Although crackpropagation and kinking are well understood, crack arrest and subsequent"stall" have been largely overlooked. Resistance during the stall regimeexposes large volumes of microstructure to stresses well in excess of thegrain boundary strength. Bridging can occur through continued propagationor reinitiation ahead of the stalled crack tip. The driving forcerequired to reinitiate is substantially greater than the driving forcerequired to kink. In addition, the critical driving force to reinitiateis sensitive to grain aspect ratio but relatively insensitive to grainangle. The marked increase in crack resistance occurs prior to bridgeformation and provides an interpretation for the rapidly risingresistance curves which govern the strength of many brittle materials atrealistically small flaw sizes
- …