651 research outputs found

    SLICES: Critical Theory as Praxis and Research-Based Service Learning

    Get PDF
    Abstract: In an era of increasing racial and ethnic diversity, both in the larger U.S. society and in institutions of higher education, using teaching strategies that explicitly address racial justice can be a meaningful way to engage a diverse student. Service Learning Initiative for Community Engagement in Sociology (SLICES) is a research-based program in the Department of Sociology at the University of Nevada, Las Vegas that uses critical theories as praxis to foster academic and professional development, and civic engagement while paying particular attention racial justice. This paper describes the use of Feminist Standpoint Theory and Information Has Value as theoretical tools for course curriculum development, larger program design, and community involvement. Key words: critical theory, Feminist Standpoint Theory, service learning, community based participatory action research, Information Has Value Acknowledgements: The authors would like to extend our appreciation the two blind reviewers for their thoughtful and comprehensive comments. SLICES’ work would not be possible without the support of our UNLV campus partners. We would like to thank the Office of Student Engagement and Diversity, the Office of Undergraduate Research, University Libraries Social Sciences Librarian, Heidi Johnson, and the Office of Career Services. We would also like to thank Sociologists for Women in Society for their generous support from the Social Action Grant and the Nevada System of Higher Education Regents Service Award program funding support for SLICES staffing positions. And the first author would like to thank José Luis Meléndrez, M.S.W., Executive Director of Community Partnerships, UNLV School of Community Health, for modeling commitment to community engagement and mentorship

    Avian Foraging Patterns in Crop Field Edges Adjacent to Woody Habitat

    Get PDF
    As natural predators of pest insects, woodland birds provide biological pest suppression in crop fields adjacent to woody edges. Although many birds using these habitats forage widely, earlier studies have found that most foraging activity occurs within 50 m of the woody edge. The goals of this study were to determine the primary area of use, or functional edge, for birds foraging in crop fields adjacent to woody edges, and to evaluate their foraging distance patterns. During the summers of 2005 and 2006, avian foraging behavior was observed at 12 research sites in east central Nebraska that contained either a shelterbelt or woody riparian edge. At each site, perches were provided at 10 m intervals out from the edge and insect larvae were placed in feeders at random locations to simulate a pest insect food resource. Birds were recorded foraging in five distance categories out from the edge (0–10, 10–20, 20–30, 30–40, and 40–50 m). Seven species foraged primarily within 20 m of the edge (72% all observations; 79% without perch or feeder observations). Ten species foraged throughout the plots but six of these generally foraged more often (45% and 49%) and four less often (30% and 30%) within 20 m of the edge. The 13 species that tended to forage more often within 20 m of the edge, with 56% of their foraging overall in this area, also tended to forage farther when perch and feeder observations were included, indicating willingness to forage farther when food resources were available. Based on a repeated measures analysis of variance, foraging distances appeared to be greater at sites with soybean as the planted crop, although this apparent trend was significant for only some species. There was no clear difference in foraging distances outward from shelterbelt versus riparian sites. These results indicate that conservation efforts within the 20 m functional edge offer potential to enhance the sustainability of both birds and crops in agricultural

    Avian Foraging Patterns in Crop Field Edges Adjacent to Woody Habitat

    Get PDF
    As natural predators of pest insects, woodland birds provide biological pest suppression in crop fields adjacent to woody edges. Although many birds using these habitats forage widely, earlier studies have found that most foraging activity occurs within 50 m of the woody edge. The goals of this study were to determine the primary area of use, or functional edge, for birds foraging in crop fields adjacent to woody edges, and to evaluate their foraging distance patterns. During the summers of 2005 and 2006, avian foraging behavior was observed at 12 research sites in east central Nebraska that contained either a shelterbelt or woody riparian edge. At each site, perches were provided at 10 m intervals out from the edge and insect larvae were placed in feeders at random locations to simulate a pest insect food resource. Birds were recorded foraging in five distance categories out from the edge (0–10, 10–20, 20–30, 30–40, and 40–50 m). Seven species foraged primarily within 20 m of the edge (72% all observations; 79% without perch or feeder observations). Ten species foraged throughout the plots but six of these generally foraged more often (45% and 49%) and four less often (30% and 30%) within 20 m of the edge. The 13 species that tended to forage more often within 20 m of the edge, with 56% of their foraging overall in this area, also tended to forage farther when perch and feeder observations were included, indicating willingness to forage farther when food resources were available. Based on a repeated measures analysis of variance, foraging distances appeared to be greater at sites with soybean as the planted crop, although this apparent trend was significant for only some species. There was no clear difference in foraging distances outward from shelterbelt versus riparian sites. These results indicate that conservation efforts within the 20 m functional edge offer potential to enhance the sustainability of both birds and crops in agricultural

    Incrimination of shrews as a reservoir for Powassan virus

    Get PDF
    Powassan virus lineage 2 (deer tick virus) is an emergent threat to American public health, causing severe neurologic disease. Its life cycle in nature remains poorly understood. We use a host-specific retrotransposon-targeted real time PCR assay to test the hypothesis that white-footed mice, considered the main eastern U.S. reservoir of the coinfecting agent of Lyme disease, is the reservoir for deer tick virus. Of 20 virus-infected host-seeking nymphal black-legged ticks 65% fed on shrews and none on mice. The proportion of ticks feeding on shrews at a site is positively associated with prevalence of viral infection, but not the Lyme disease agent. Viral RNA is detected in the brain of one shrew. We conclude that shrews are a likely reservoir host for deer tick virus and that host bloodmeal analysis can provide direct evidence to incriminate reservoir hosts, thereby promoting our understanding of the ecology of tick-borne infections

    Results of the REFLEX (Return Flux Experiment) Flight Mission

    Get PDF
    The numerous problems occurring in this first flight of the REFLEX experiment, both in the spacecraft and with the instrument package, seriously constrained the acquisition and analysis of data and severely limited the interpretation of the data that were obtained. Of these, the ambient helium measurements appear to be the most promising. They are summarized and discussed in Appendix A. Further analyses could be attempted to establish the correct values for the energy centers as they varied during the mission. In addition, an extensive laboratory recalibration on a high-speed beam system could in principle provide corrections to be used in analyzing and interpreting the returned data set. The unknown malfunction which generated the energy drift needs to be understood and corrected before the REFLEX experiment is reflown; some hardware modification, or at least retuning, is likely to be required

    Auxotrophic interactions: A stabilizing attribute of aquatic microbial communities?

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johnson, W. M., Alexander, H., Bier, R. L., Miller, D. R., Muscarella, M. E., Pitz, K. J., & Smith, H. Auxotrophic interactions: A stabilizing attribute of aquatic microbial communities? FEMS Microbiology Ecology, (2020): fiaa115, doi: 10.1093/femsec/fiaa115.Auxotrophy, or an organism's requirement for an exogenous source of an organic molecule, is widespread throughout species and ecosystems. Auxotrophy can result in obligate interactions between organisms, influencing ecosystem structure and community composition. We explore how auxotrophy-induced interactions between aquatic microorganisms affect microbial community structure and stability. While some studies have documented auxotrophy in aquatic microorganisms, these studies are not widespread, and we therefore do not know the full extent of auxotrophic interactions in aquatic environments. Current theoretical and experimental work suggests that auxotrophy links microbial community members through a complex web of metabolic dependencies. We discuss the proposed ways in which auxotrophy may enhance or undermine the stability of aquatic microbial communities, highlighting areas where our limited understanding of these interactions prevents us from being able to predict the ecological implications of auxotrophy. Finally, we examine an example of auxotrophy in harmful algal blooms to place this often theoretical discussion in a field context where auxotrophy may have implications for the development and robustness of algal bloom communities. We seek to draw attention to the relationship between auxotrophy and community stability in an effort to encourage further field and theoretical work that explores the underlying principles of microbial interactions.This work was supported by the National Science Foundation [OCE-1356192]

    Liquid Sucrose Consumption Promotes Obesity and Impairs Glucose Tolerance Without Altering Circulating Insulin Levels

    Get PDF
    © 2018 The Obesity Society Objective: Multiple factors contribute to the rising rates of obesity and to difficulties in weight reduction that exist in the worldwide population. Caloric intake via sugar-sweetened beverages may be influential. This study tested the hypothesis that liquid sucrose intake promotes obesity by increasing serum insulin levels and tissue lipid accumulation. Methods: C57BL/6J mice were given 30% sucrose in liquid form. Changes in weight gain, body composition, energy expenditure (EE), and tissue lipid content were measured. Results: Mice drinking sucrose gained more total body mass (TBM), had greater fat mass, and displayed impaired glucose tolerance relative to control mice. These metabolic changes occurred without alterations in circulating insulin levels and despite increases in whole body EE. Lipid accrued in liver, but not skeletal muscle, of sucrose-consuming mice. Oxygen consumption (VO2) correlated with fat-free mass and moderately with TBM, but not with fat mass. ANCOVA for treatment effects on EE, with TBM, VO2, lean body mass, and fat-free mass taken as potential covariates for EE, revealed VO2 as the most significant correlation. Conclusions: Weight gain induced by intake of liquid sucrose in mice is associated with lipid accrual in liver, but not skeletal muscle, and occurs without an increase in circulating insulin

    Barriers and facilitators to diabetes screening and prevention after a pregnancy complicated by gestational diabetes

    Get PDF
    OBJECTIVE: Gestational diabetes mellitus (GDM) is increasing in the United States, with higher rates among minoritized racial and ethnic populations and lower income populations. GDM increases risk for type 2 diabetes (T2DM), and postpartum diabetes screening and prevention are imperative. This qualitative study examines barriers and facilitators to postpartum T2DM screening and prevention among non-privately insured individuals with a history of GDM in a state prior to Medicaid expansion. METHODS: Thirty-six non-privately insured women with a history of GDM completed semi-structured interviews. Four focus groups and seven interviews were conducted with 30 nurse practitioners, physicians, physician assistants, nurses and registered dietitians from Federally Qualified Health Centers in St. Louis, MO. Interviews and focus groups were audio-recorded and transcribed. Data were analyzed using an integrative thematic analysis informed by the socio-ecological model. RESULTS: Barriers and facilitators to T2DM screening and prevention occur across multiple environments (society, healthcare system, interpersonal, and individual). Societal barriers include insurance issues, unemployment, and lack of transportation, childcare, safe housing, and healthy food access, while facilitators include government sponsored programs and community organizations. Healthcare system barriers include care fragmentation, scheduling policies and time constraints while facilitators include care coordination, pregnancy support groups, and education materials. Interpersonal barriers include negative care experiences, cultural differences, communication challenges, competing priorities, and lack of a social support network, while facilitators include family and friend support and positive care experiences. Individual barriers include health complications and unhealthy food and exercise patterns, while facilitators include child wellbeing, empowered attitudes and healthy food and exercise patterns. CONCLUSIONS: The socioecological model highlights the societal and systemic determinants that encompass individual and interpersonal factors affecting postpartum T2DM screening and prevention. This framework can inform multi-level interventions to increase postpartum T2DM screening and prevention in this high-risk population, including policy changes to alleviate higher-level barriers

    Shifts in the Fecal Microbiota Associated with Adenomatous Polyps

    Get PDF
    BACKGROUND: Adenomatous polyps are the most common precursor to colorectal cancer, the second leading cause of cancer-related death in the United States. We sought to learn more about early events of carcinogenesis by investigating shifts in the gut microbiota of patients with adenomas. METHODS: We analyzed 16S rRNA gene sequences from the fecal microbiota of patients with adenomas (n = 233) and without (n = 547). RESULTS: Multiple taxa were significantly more abundant in patients with adenomas, including Bilophila, Desulfovibrio, proinflammatory bacteria in the genus Mogibacterium, and multiple Bacteroidetes species. Patients without adenomas had greater abundances of Veillonella, Firmicutes (Order Clostridia), and Actinobacteria (family Bifidobacteriales). Our findings were consistent with previously reported shifts in the gut microbiota of colorectal cancer patients. Importantly, the altered adenoma profile is predicted to increase primary and secondary bile acid production, as well as starch, sucrose, lipid, and phenylpropanoid metabolism. CONCLUSIONS: These data hint that increased sugar, protein, and lipid metabolism along with increased bile acid production could promote a colonic environment that supports the growth of bile-tolerant microbes such as Bilophilia and Desulfovibrio In turn, these microbes may produce genotoxic or inflammatory metabolites such as H2S and secondary bile acids, which could play a role in catalyzing adenoma development and eventually colorectal cancer. IMPACT: This study suggests a plausible biological mechanism to explain the links between shifts in the microbiota and colorectal cancer. This represents a first step toward resolving the complex interactions that shape the adenoma-carcinoma sequence of colorectal cancer and may facilitate personalized therapeutics focused on the microbiota
    • …
    corecore