529 research outputs found
Optimizing the fast Rydberg quantum gate
The fast phase gate scheme, in which the qubits are atoms confined in sites
of an optical lattice, and gate operations are mediated by excitation of
Rydberg states, was proposed by Jaksch et al. Phys. Rev. Lett. 85, 2208 (2000).
A potential source of decoherence in this system derives from motional heating,
which occurs if the ground and Rydberg states of the atom move in different
optical lattice potentials. We propose to minimize this effect by choosing the
lattice photon frequency \omega so that the ground and Rydberg states have the
same frequency-dependent polarizability \alpha(omega). The results are
presented for the case of Rb.Comment: 5 pages, submitted to PR
Recommended from our members
Electrometallurgical treatment of TMI-2 fuel debris
Argonne National Laboratory (ANL) has developed an electrometallurgical treatment process suitable for conditioning DOE oxide spent fuel for long-term storage or disposal. The process consists of an initial oxide reduction step that converts the actinide oxides to a metallic form, followed by an electrochemical separation of uranium from the other fuel constituents. The final product of the process is a uniform set of stable waste forms suitable for long-term storage or disposal. The suitability of the process for treating core debris from the Three Mile Island-2 (TMI-2) reactor is being evaluated. This paper reviews the results of preliminary experimental work performed using simulated TMI-2 fuel debris
Genome-wide association study of peripheral neuropathy with D-drug-containing regimens in AIDS Clinical Trials Group protocol 384.
Stavudine (d4T) was, until recently, one of the most widely prescribed antiretroviral drugs worldwide. While there has been a major shift away from d4T use in resource-limited countries, a large number of patients have previously received (or continue to receive) d4T, and many have developed peripheral neuropathy. The identification of genetic predictors of increased risk might suggest novel therapeutic targets for such patients. In AIDS Clinical Trials Group protocol 384, antiretroviral-naïve patients were randomized to d4T/didanosine (ddI)- or zidovudine/lamivudine-containing regimens. Data from d4T/ddI recipients were analyzed for genome-wide associations (approximately 1 million genetic loci) with new onset distal sensory peripheral neuropathy. Analyses involved 254 patients (49 % White, 34 % Black, 17 % Hispanic), comprising 90 peripheral neuropathy cases (32 grade 1, 35 grade 2, 23 grade 3) and 164 controls. After correcting for multiple comparisons, no polymorphism was consistently associated with neuropathy among all patients, among White, Black, and Hispanic patients analyzed separately, both in genome-wide analyses (threshold, P < 5.0 × 10(-8)) and focused on 46 neuropathy-associated genes (threshold, P < 3.5 × 10(-5)). In the latter analyses, the lowest P values were in KIF1A among Whites (rs10199388, P = 8.4 × 10(-4)), in LITAF among Blacks (rs13333308, P = 6.0 × 10(-6)), and in NEFL among Hispanics (rs17763685, P = 5.6 × 10(-6)). Susceptibility to d4T/ddI-associated neuropathy is not explained by a single genetic variant with a marked effect
Body Fixed Frame, Rigid Gauge Rotations and Large N Random Fields in QCD
The "body fixed frame" with respect to local gauge transformations is
introduced. Rigid gauge "rotations" in QCD and their \Sch equation are studied
for static and dynamic quarks. Possible choices of the rigid gauge field
configuration corresponding to a nonvanishing static colormagnetic field in the
"body fixed" frame are discussed. A gauge invariant variational equation is
derived in this frame. For large number N of colors the rigid gauge field
configuration is regarded as random with maximally random probability
distribution under constraints on macroscopic--like quantities. For the uniform
magnetic field the joint probability distribution of the field components is
determined by maximizing the appropriate entropy under the area law constraint
for the Wilson loop. In the quark sector the gauge invariance requires the
rigid gauge field configuration to appear not only as a background but also as
inducing an instantaneous quark-quark interaction. Both are random in the large
N limit.Comment: 29 pages LATEX, Weizmann Institute preprint WIS-93/40/Apr -P
Tunable variation of optical properties of polymer capped gold nanoparticles
Optical properties of polymer capped gold nanoparticles of various sizes
(diameter 3-6 nm) have been studied. We present a new scheme to extract size
dependent variation of total dielectric function of gold nanoparticles from
measured UV-Vis absorption data. The new scheme can also be used, in principle,
for other related systems as well. We show how quantum effect, surface atomic
co - ordination and polymer - nanoparticle interface morphology leads to a
systematic variation in inter band part of the dielectric function of gold
nanoparticles, obtained from the analysis using our new scheme. Careful
analysis enables identification of the possible changes to the electronic band
structure in such nanoparticles.Comment: 13 pages,7 figures, 1 tabl
From Social Data Mining to Forecasting Socio-Economic Crisis
Socio-economic data mining has a great potential in terms of gaining a better
understanding of problems that our economy and society are facing, such as
financial instability, shortages of resources, or conflicts. Without
large-scale data mining, progress in these areas seems hard or impossible.
Therefore, a suitable, distributed data mining infrastructure and research
centers should be built in Europe. It also appears appropriate to build a
network of Crisis Observatories. They can be imagined as laboratories devoted
to the gathering and processing of enormous volumes of data on both natural
systems such as the Earth and its ecosystem, as well as on human
techno-socio-economic systems, so as to gain early warnings of impending
events. Reality mining provides the chance to adapt more quickly and more
accurately to changing situations. Further opportunities arise by individually
customized services, which however should be provided in a privacy-respecting
way. This requires the development of novel ICT (such as a self- organizing
Web), but most likely new legal regulations and suitable institutions as well.
As long as such regulations are lacking on a world-wide scale, it is in the
public interest that scientists explore what can be done with the huge data
available. Big data do have the potential to change or even threaten democratic
societies. The same applies to sudden and large-scale failures of ICT systems.
Therefore, dealing with data must be done with a large degree of responsibility
and care. Self-interests of individuals, companies or institutions have limits,
where the public interest is affected, and public interest is not a sufficient
justification to violate human rights of individuals. Privacy is a high good,
as confidentiality is, and damaging it would have serious side effects for
society.Comment: 65 pages, 1 figure, Visioneer White Paper, see
http://www.visioneer.ethz.c
Discrete cilia modelling with singularity distributions
We discuss in detail techniques for modelling flows due to finite and infinite arrays of beating cilia. An efficient technique, based on concepts from previous ‘singularity models’ is described, that is accurate in both near and far-fields. Cilia are modelled as curved slender ellipsoidal bodies by distributing Stokeslet and potential source dipole singularities along their centrelines, leading to an integral equation that can be solved using a simple and efficient discretisation. The computed velocity on the cilium surface is found to compare favourably with the boundary condition. We then present results for two topics of current interest in biology. 1) We present the first theoretical results showing the mechanism by which rotating embryonic nodal cilia produce a leftward flow by a ‘posterior tilt,’ and track particle motion in an array of three simulated nodal cilia. We find that, contrary to recent suggestions, there is no continuous layer of negative fluid transport close to the ciliated boundary. The mean leftward particle transport is found to be just over 1 μm/s, within experimentally measured ranges. We also discuss the accuracy of models that represent the action of cilia by steady rotlet arrays, in particular, confirming the importance of image systems in the boundary in establishing the far-field fluid transport. Future modelling may lead to understanding of the mechanisms by which morphogen gradients or mechanosensing cilia convert a directional flow to asymmetric gene expression. 2) We develop a more complex and detailed model of flow patterns in the periciliary layer of the airway surface liquid. Our results confirm that shear flow of the mucous layer drives a significant volume of periciliary liquid in the direction of mucus transport even during the recovery stroke of the cilia. Finally, we discuss the advantages and disadvantages of the singularity technique and outline future theoretical and experimental developments required to apply this technique to various other biological problems, particularly in the reproductive system
Astroparticle Physics with a Customized Low-Background Broad Energy Germanium Detector
The MAJORANA Collaboration is building the MAJORANA DEMONSTRATOR, a 60 kg
array of high purity germanium detectors housed in an ultra-low background
shield at the Sanford Underground Laboratory in Lead, SD. The MAJORANA
DEMONSTRATOR will search for neutrinoless double-beta decay of 76Ge while
demonstrating the feasibility of a tonne-scale experiment. It may also carry
out a dark matter search in the 1-10 GeV/c^2 mass range. We have found that
customized Broad Energy Germanium (BEGe) detectors produced by Canberra have
several desirable features for a neutrinoless double-beta decay experiment,
including low electronic noise, excellent pulse shape analysis capabilities,
and simple fabrication. We have deployed a customized BEGe, the MAJORANA
Low-Background BEGe at Kimballton (MALBEK), in a low-background cryostat and
shield at the Kimballton Underground Research Facility in Virginia. This paper
will focus on the detector characteristics and measurements that can be
performed with such a radiation detector in a low-background environment.Comment: Submitted to NIMA Proceedings, SORMA XII. 9 pages, 4 figure
Evolution of whole-body enantiomorphy in the tree snail genus Amphidromus
Diverse animals exhibit left–right asymmetry in development. However, no example of dimorphism for the left–right polarity of development (whole-body enantiomorphy) is known to persist within natural populations. In snails, whole-body enantiomorphs have repeatedly evolved as separate species. Within populations, however, snails are not expected to exhibit enantiomorphy, because of selection against the less common morph resulting from mating disadvantage. Here we present a unique example of evolutionarily stable whole-body enantiomorphy in snails. Our molecular phylogeny of South-east Asian tree snails in the genus Amphidromus indicates that enantiomorphy has likely persisted as the ancestral state over a million generations. Enantiomorphs have continuously coexisted in every population surveyed spanning a period of 10 years. Our results indicate that whole-body enantiomorphy is maintained within populations opposing the rule of directional asymmetry in animals. This study implicates the need for explicit approaches to disclosure of a maintenance mechanism and conservation of the genus
‘A sword of Damocles’ : patient and caregiver beliefs, attitudes and perspectives on presymptomatic testing for autosomal dominant polycystic kidney disease: a focus group study
Background and objectives: Presymptomatic testing is available for early diagnosis of hereditary autosomal dominant polycystic kidney disease (ADPKD). However, the complex ethical and psychosocial implications can make decision-making challenging and require an understanding of patients’ values, goals and priorities. This study aims to describe patient and caregiver beliefs and expectations regarding presymptomatic testing for ADPKD.
Design, setting and participants: 154 participants (120 patients and 34 caregivers) aged 18 years and over from eight centres in Australia, France and Korea participated in 17 focus groups. Transcripts were analysed thematically.
Results: We identified five themes: avoiding financial disadvantage (insecurity in the inability to obtain life insurance, limited work opportunities, financial burden); futility in uncertainty (erratic and diverse manifestations of disease limiting utility, taking preventive actions in vain, daunted by perplexity of results, unaware of risk of inheriting ADPKD); lacking autonomy and support in decisions (overwhelmed by ambiguous information, medicalising family planning, family pressures); seizing control of well-being (gaining confidence in early detection, allowing preparation for the future, reassurance in family resilience); and anticipating impact on quality of life (reassured by lack of symptoms, judging value of life with ADPKD).
Conclusions: For patients with ADPKD, presymptomatic testing provides an opportunity to take ownership of their health through family planning and preventive measures. However, these decisions can be wrought with tensions and uncertainty about prognostic implications, and the psychosocial and financial burden of testing. Healthcare professionals should focus on genetic counselling, mental health and providing education to patients’ families to support informed decision-making. Policymakers should consider the cost burden and risk of discrimination when informing government policies. Finally, patients are recommended to focus on self-care from an early age
- …